Biochemical Reactions - Welcome to Ms. Ferrari's Classroom

Biochemical Reactions - Welcome to Ms. Ferrari's Classroom

Biochemical Reactions SBI4U1 Acids produces H+ ions in H2O

pH below 7 Sour taste, conducts electricity Increase [H+] or [H3O+] ions when dissolved in water HCl (aq) + H2O (l) H3O+ (aq) + Cl- (aq) Bases produces OH- ions in H2O (or accepts/ reacts with H+ ions) pH above 7

Bitter taste, conducts electricity Increase [OH-] when dissolved in water NaOH (s) Na+ (aq) + OH- (aq) Strong/Weak Acids and Bases Depends on the degree to which they dissolve into ions Strong acids/bases completely ionize in water (e.g. NaOH, HCl) 100%

HCl (aq) + H2O (l) H3O+ (aq) + Cl- (aq) 100% NaOH (s) Na+ (aq) + OH- (aq) 100% ionization Weak acids/bases only partially ionize in

water 1.3% CH3COOH (aq) + H2O (l) NH3 (aq) + H2O(l) 10% H3O+ (aq) + Cl - (aq) NH4 + (aq)

+ OH - (aq) Note: double arrow represents that reaction is reversible Acid-Base Buffers Cells are sensitive to pH levels Cell processes w/ proteins and enzymes (pH 7) Blood (pH 7.4, 0.4 increase can be fatal)

Acidosis: blood pH < 7.35 Alkalosis: blood pH >7.45 Blood pH can be affected by food Acidic fruits, wine, salad dressing Alkaline shrimp, tonic water Buffers Chemical systems with substances that

donate/remove H+ ions when pH changes Example: Carbonic acid-bicarbonate buffer H2O + CO2 H2CO3 HCO3- + H+ H2O + CO2

H2CO3 HCO3- + H+ If too acidic H + will react with HCO3- to produce H2CO3 Excess H+ are removed from the solution to avoid decrease in pH If too basic, H2CO3 will ionize to replace H+

H+ ions are added to avoid increase in pH Animation: http://www.mhhe.com/physsci/chemistry/essentialchemistry/flash/buffer12.swf Oxidation-Reduction Reactions Oxidation: loss of electrons (loses hydrogen or gains oxygen) Reduction: gain of electrons Redox Rxn: LEO the lion says GER LEO loss of electrons is oxidation

GER gain of electrons is reduction Examples: C3H8 LEO + 5O2 GER C6H12O6

LEO + 6O2 GER 3CO2 6CO2

+ H2O + 6H2O Sugars are oxidized to produce carbon dioxide and water in cellular respiration.

Condensation/Hydrolysis Rxns Condensation Rxn: formation of a covalent bond with the production of water Anabolic rxn (makes larger molecules) Hydrolysis Rxn: formation of a covalent bond with the addition of water Catabolic (breaks down into smaller molecules) Animation: http://www.uic.edu/classes/bios/bios100/lectures/polymer.htm

An H from one molecule combines with an OH from another. Water is released and the two molecules join. Water is

added. One H goes to one molecule and the OH to the other to break them apart. Carbohydrates Note: condensation rxn is also known as dehydration synthesis

Lipids Protein Nucleotide Purine: A and G Pyrimidine: C, T, U Enzymes

Activation Energy (EA): energy required for a rxn to take place Catalyst: speeds up the rate of a chemical rxn without being consumed Enzymes: protein catalysts that increase the rate of reaction by lowering the EA Enzymes typically end in ase Example: amylose

amylase + H2O maltose

There are many enzymes involved in digestion: peptase, lipase, maltase How Enzymes Work: Enzymes are made up of long chains of amino acids Enzymes attach to substrates in order to work Most enzymes have globular shapes with

active sites Where the substrate binds Enzyme-Substrate Complex: enzyme with a substrate that is bound to enzymes active site In this rxn, a dissacharide sucrose is broken down into glucose and fructose.

Since enzymes are protein, they can become denatured if the temperature or pH change Some enzymes require assistance from cofactors of coenzymes Coenzymes are organic molecules Cofactors are metal ions like iron or zinc Some substances can inhibit enzyme function:

Competitive Inhibitors: similar to substrate, bind to active site and block normal substrate Non-Competitive Inhibitors: do not compete with substrate, attach to different site, change the shape so substrate cannot bind Enzyme activity is controlled by:

1. Restricting the production of an enzyme 2. Inhibiting or stimulating enzymes activity by the use of allosteric sites Not the active site Other molecules can interact with/regulate enzyme activity If an activator binds = enzyme is functional If an inhibitor binds = enzyme is not functional Review Questions

Why are enzymes important in biological processes? Give an example. What is an enzyme-substrate complex? Differentiate b/t competitive and noncompetitive inhibition. Things You Should Know...

Redox rxns Acid/Base Buffers Condensation vs. Hydrolysis Rxn Role of enzymes Enzyme substrate complex Competitive vs. non-competitive inhibition

Recently Viewed Presentations

  • SOCIAL MEDIA TODAY - CIF Southern Section

    SOCIAL MEDIA TODAY - CIF Southern Section

    Social Media Policy. Participation in activities, groups, and teams is a privilege at (insert high school). The use of social media by a student considered to be "unbecoming of a (insert mascot here)" may result in discipline including suspension or...
  • Ch. 10 Moles!

    Ch. 10 Moles!

    Molar Mass. The Mass of 1 mole (in grams) . SAME . as . avg. atomic mass (bottom # in periodic square) Examples: 1 . mole of C atoms = 12.01 g. 1 mole of Mg atoms = 24.31 ....
  • Section 508 and NASA Presentation to GSFC Webmasters November ...

    Section 508 and NASA Presentation to GSFC Webmasters November ...

    What Is Section 508? In 1998, Congress amended the Rehabilitation Act of 1973 to include Section 508, which provides people with disabilities opportunities to gain meaningful employment with the Federal government and to reflect the focus on technology.
  • Endogenetic processes and landforms

    Endogenetic processes and landforms

    Endogenetic processes and landforms Group members: Fung Ka Yan (8) Lau Chui Ying (16) Wong Ming Kong (32) Yeung Ka Wai (38) Luke Gilbert (45) Introduction In this presentation we will talk about endogenetic processes and landforms work, and how...
  • Diapositiva 1 - Institut Teknologi Bandung

    Diapositiva 1 - Institut Teknologi Bandung

    Split Horizon and Poison Reverse. Iitannounces all networks. However, those networks learned in a given direction are announced with a hop count of 16, indicating that the network is unreachable It avoids the Distance Vector Protocol deleting the route because...
  • Serial Communication - University of Washington

    Serial Communication - University of Washington

    Abstract digital values are fine but... We have to deal with the realities of voltage and current e. g. Technology: CMOS vs. Bipolar Voltage level: 5v vs. 3.3v vs. 2.5v
  • The Merlin Standard: Improving Work Programme Supply Chains

    The Merlin Standard: Improving Work Programme Supply Chains

    We are aware from feedback that although some providers have had direct experience of Merlin through the pilots, for others who have not gone through that process there remains a
  • EOG Information for Parents

    EOG Information for Parents

    EOG Information for Parents Highcroft Drive Elementary School 2016 Test Plan June 17th - Reading Grades 3 and Science Grade 5 June 20th - Math Grades 3 and Reading Grade 5 June 21st - Math Grade 5 and Reading Grade...