CDF @ UCSD Frank Würthwein Computing (finished since 8/2006 ...

CDF @ UCSD Frank Würthwein Computing (finished since 8/2006 ...

Physics 214 Experimental Particle Physics Lecture 1 What to expect. Well start with a grand tour. I do not expect you to understand this tour in detail. Instead, think of it as an orientation to which well fill in

many of the details over the next two quarters. The big picture Standard Model of Particle Physics Standard Model of Cosmology My taste: Interesting experimental questions today all revolve around these two models. The most promising are those that key in on

experimental inconsistencies between them. Will try to focus on topics that matter for your graduate and post-doc career, with a little bit of general context thrown in. The BIG Experimental Qs Matter content of the universe What is dark matter? What is dark energy? Where did all the anti-matter go?

CP violation in the lepton sector? New physics with CP violating couplings? Electroweak Symmetry breaking Does the higgs exist? And at what mass? Matter Content of the Universe I will not cover cosmology in this class! Its covered in detail in Physics 227 at UCSD.

Or read up on it in references at course web site. Observation of dark matter. Collision of two galaxies. Gas clouds collide, drag slows them down as they interact. Use grav. lensing to measure mass in collission area. Find that there is additional mass outside the drag

region. There must be mass that does not shine nor interact with the gas in the galaxy. Matter/anti-matter Asymmetry The cosmic diffuse gamma ray spectrum observed rules out the existence of equal number of

matter and anti-matter domains with domain sizes smaller than the size of the visible universe. Matter-antimatter symmetry must be broken at some as yet unknown scale. Explanation Attempts CP violation in quark sector Well measured and insignificant compared to whats

needed. CP violation in lepton sector Measure sin13 in neutrino sector to assess experimental feasibility. If feasible, build neutrino factory to measure CP violation in lepton sector. New physics at higher energies. E.g. Most general SUSY model has 44 CP violating

couplings in Lagrangian, most of which enter via SUSY breaking mechanism. Standard model predicts higgs mH = 76+33-24GeV mH < 144GeV at 95% C.L. Direct searches rule out mH < 114 GeV.

All of MSSM requires a light Higgs (mH < 130GeV) There are plenty of other ways for nature to implement EWK symmetry breaking, incl. more than one higgs doublet. We will discuss this in some detail next quarter. lots of smaller qs as well Is the neutrino its own anti-particle? The strong CP problem Do Axions exist?

and lots more that are more pedestrian in nature. and then theres speculation

Supersymmetry Extra dimensions Grand Unified Theories et al. Lepton flavor violation Proton decay Black holes made in the lab Most of this I will stay away from in this course,

except maybe towards the end of the second quarter. Experimental facilities coming up Collider Physics: 1st results from LHC ~2009, expect to run for ~10years. Next Linear Collider not before 2015 Neutrino physics: 1st results on sin13 ~2012 CP violation physics not before 2020

Dedicated Dark Matter Searches Direct searches with cryogenic detectors Reach sensitivity where dark matter candidates possibly observed at LHC might be confirmed within the next decade. Indirect searches via astrophysical objects Many projects both currently running as well as planned Dark Energy

A variety of projects with timescales from few years to more than a decade. Switch gears now Talk a little about the mechanics of this course. Lectures Twice a week:

Mo,We 2-3:20pm Hope to have some transparencies up at the website by lunch of the day of the lecture. Will use transparencies as guide for content, but do all derivations by hand. Hope to capture my scribbling, and put it online after each lecture. Seminars

Each student needs to give a seminar talk that accounts for 20% of the total grade. Im expecting a 30min talk on one of the topics listed on the website. Im expecting serious preparation for this, and will want to see the slides one week prior to the day they are given!!! We will schedule those seminars outside the regular lecture time.

Grades 50% take home final Most likely during week before finals week. 30% homework I will reuse some of the homework assignments from last year, and expect you to not look up solutions from your friends !!! I have no grader, and thus might decide not to grade all problems on all homework assignments.

20% seminar If you are a theorist, and dont want to put in the effort required to get a decent grade, then please sign up pass/fail. I wont fail anybody who does ok on the final or gives a decent seminar. Any Questions? If not, lets get started with an introductory fly through

Particle Physics. Elementary Particle Physics The quest to understand matter and how it interacts. Discover which particles are elementary Develop theory of their interactions Whats an elementary particle ? Something without further constituents

Point-like Probing the size via scattering Shine light (or some other quantum) on an object. Your resolution depends on energy of quantum Remember Rutherford scattering! hc

hc E = h = = E hc R E Need high energy to probe short distances!

Structure of matter R ~ 10-8 cm atoms R ~ 10-12 cm nuclei R ~ 10-13 cm proton

R < 10-18 cm quarks, leptons At present, we consider quarks & leptons To be point-particles and elementary. Natural Units Energy [E] eV, keV, MeV, GeV, TeV, PeV, 100, 103, 106, 109, 1012, 1015 1eV = 1.6 10-19 J

eV is more useful unit in particle physics than Joule for obvious reasons. Largest energy colliders: Tevatron ~ 2TeV CoM for proton-antiproton collission LHC ~ 14TeV CoM for proton-proton collission. Natural Units (2) Mass: E = m c2

[E] = [m] [v]2 = [m] In natural units velocity is dimensionless because Special relativity treats length and time on equal footing. [length]/[time] = dimensionless ! The only fixed, and thus natural scale is c. Accordingly, we set c=1. Natural Units (3) Momentum [P] = [m] [v] = [m] = [E]

Angular momentum [J] = [length] [P] = [length] [E] but angular momentum is quantized with natural scale being h It is thus natural to set h = 1 ( Recall h ~ 10-34 J sec ~ 6.6 10-22 MeV/sec ) Natural Units (4)

Charge Coulomb force: F ~ Q2/L2 3 [length] [Q] = [F][length]2 = [M] [time]2 Charge is dimensionless. Its scale is defined by the electromagnetic interaction. Well get back to this later.

Natural Units Summary Quantity N.U. E P M length

time J Q GeV GeV GeV 1/GeV 1/GeV dimensionless

dimensionless Conv. Factor to SI 1GeV = 1.6 10-19J 1kg = 5.61 1026GeV 1m = 5.07 1015 GeV-1 1sec = 1.52 1024 GeV-1 Some more useful facts

1 fermi = 10-13cm = 5.07 GeV-1 1 fermi2 = 10 mb 1 GeV-2 = 0.389 mb e2 1 = 4 137 e = 4 0.303

Fundamental Particles Fermions: Spin 1/2 -> Fermi-Dirac statistics All matter is made of fermions Bosons: Integer spin -> Bose-Einstein statistics All forces are mediated via bosons

Forces = Interactions Strong (QCD) Mediated by gluons Holds nuclei together Electroweak E&M mediated by photon Weak mediated by W,Z Electroweak symmetry breaking requires Higgs boson.

Gravity Mediated by graviton Beyond the scope of this course Photon, gluon, W, Z all spin=1 Higgs is spin=0 Graviton is spin=2 Photon, gluon,graviton m=0

W,Z,Higgs roughly 100GeV EKW symmetry breaking explains why EWK bosons have such different masses. Matter comes in 2 types Leptons: EWK & gravity Quarks:

EWK & gravity & strong Both types come in 3 families (or flavors) of doublets. Charged particles couple to photon, W, Z Neutral particles couple only to W,Z Quarks are bound into hadrons Strong force increase with distance,

thus making it impossible to have free quarks. The charge of the strong force is called color because its a triplet. Color neutrality can be achieved either via color-anticolor pair Color triplet with one of each color Anticolor triplet with one of each color Quark Model

At this point it should be obvious that you can construct a large variety of baryons and mesons simply by angular momentum addition. All of them will be color neutral. Lowest lying states for a given flavor composition are stable with regard to strong interaction but not weak interaction. Excited states can be made by adding orbital angular momentum of the quarks with respect to each other.

Excited states are not stable with respect to strong interactions. However, natures more complicated still. The quarks from quantum fluctuations are called see quarks. You can probe see quarks and gluons inside hadrons by scattering electrons off hadrons at high momentum transfer.

Interactions mediated by vector bosons Tempting to think about the exchange as a quantum fluctuation. Range of force as quantum fluctuation Et h E = mc

2 h t 2 mc h R ct = mc

Range of force is inverse proportional to mass of mediator. Well, Im cheating a little We will see that this works because: Cross section |A|A|A|2

A is perturbative expansion in Feynman diagrams. Diagrams include vertex factors and propagators. Propagators are interpreted as mediators of the interaction. If you wish, the mental picture works because perturbation theory works. Perturbation Cartoon

Rate per unit time for i->f

Recently Viewed Presentations

  • Relations - review  A binary relation on A

    Relations - review A binary relation on A

    partial order. symmetric . ireflexive. strict partial order total order. equivalence relation = reflexive . symmetric . transitive "equivalence" of objects e.g., "X has the same age as Y" partial order = reflexive . antisymmetric. transitive "order" of objects e.g.,...
  • How do Human Sensors Work? - TeachEngineering

    How do Human Sensors Work? - TeachEngineering

    senses it and relays it to the nervous system (spinal cord and brain) which is the . ... An example answer is provided on the post-quiz answer key on . slide 16. Review student answers as a class. Center for...
  • Genocide - Cabarrus County Schools

    Genocide - Cabarrus County Schools

    Extermination begins, and quickly becomes the mass killing legally called "genocide." When it is sponsored by the state, the armed forces often work with militias to do the killing. Sometimes the genocide results in revenge killings by groups against each...
  • Gaussian Distribution - Ryerson University

    Gaussian Distribution - Ryerson University

    Arial Calibri Wingdings Times New Roman Office Theme MathType 5.0 Equation Additive White Gaussian Noise (AWGN) Channel and Matched Filter Detection Part I - Gaussian distribution Gaussian (Normal) Distribution Gaussian RV General Gaussian RV PDF of Gaussian Distribution CDF of...
  • Isaiah 1-39 Victor Buksbazen

    Isaiah 1-39 Victor Buksbazen

    Isaiah the son of Amoz lived halfway between Moses the Lawgiver and Jesus the Messiah. He was a contemporary of the prophets Amos, Hosea and Micah. The ancient Jewish tradition that Isaiah's father Amoz was a brother of King Amaziah...
  • Cool for School: GPS Social Studies Resources in

    Cool for School: GPS Social Studies Resources in

    Cool for School: GPS Social Studies Resources in GALILEO Georgia Council for Social Studies Conference October 19, 2007 GaETC, November 15, 2007
  • Distributed Generation Contracts Program Updates Office of Energy

    Distributed Generation Contracts Program Updates Office of Energy

    Projects Selected . Solar - 92 kW, 281 kW, 480 kW and 1.7 MW systems. The 2nd round experienced ceiling price drops between 27.5% and 45% for the medium scale solar projects, and almost 30% for the large scale solar...
  • Who Was Isaiah?

    Who Was Isaiah?

    2 And suddenly six men came from the direction of the upper gate, which faces north, each with his battle-ax in his hand. One man among them was clothed with linen and had a writer's inkhorn at his side. They...