Chapter 2. Structure and Properties

Chapter 2. Structure and Properties

Chapter 2. Addition to Carbonyl Groups O- R' Y O R O Y Nu:- C+ R Y Y R 1. Nu: Nu Nu H+ Nu - Y = good leaving group OH CareyB-Chap2-5ed

O + 2. H - -Y Y Nu -O X O R Nu OH R X R' H =C Nu + R - X -

CHR' Nu R Y O R' H Nu NR Nu=NHR R - H2O Y Y= Un - H sat . 2O R'HC Y Unsat. Nu 1

Enolates Addition to Carbonyl Groups O O R1 carbonyls R2 O base + H R3 aldehyde R1 R1 = alkyl/aryl RO O- RO R2 CareyB-Chap2-5ed R2 - OR R3 R2 aldol product R1 = OR (self-condensation) O

OH O O RO R2 -keto esters - H2O O R2 R1 R3 R2 condensation product 2 Aldol Addition & Condensation Reactions General mechanism: base-/acid-catalyzed Directed aldol reactions: regio-/stereospecific control of enolate stereochemistry: diastereoselectivity greater

E with LiBr: larger aggregation; 68 middle mechanism of aldol addition: cyclic chair-like TS chelating greater atoms: Zimmerman-Traxler model; 68 top selectivity with Z-enolates: 69 top & 70 Table 2.1 alternative CareyB-Chap2-5ed transition-state models for aldol reactions cyclic ketones: only E-enolates; 69 middle more stable anti: by equilibration; 71 middle 3 Diastereoselective Aldol Reactions O + R3 H R2 OM

H 1 R + R3 H H 2 O R3 R1 R2 syn (erythro) Z-enolate O OH OH OM 1 R R E-enolate R3

O R1 anti (threo) R2 Generalizations CareyB-Chap2-5ed Z-enolates to syn & E-enolates to anti aldol products better selectivities when R1 or R3 is large reversed correlation when R2 is very large 4 Alternative Models (III): Open TS Noyori JACS 1977, 99, 1265 & 1981, 103, 2106 R1 syn (major) OM R3 H R2 H O R1

anti (minor) H R2 H O syn CareyB-Chap2-5ed R3 R2 R1 H H anti (minor) Z-enolate O OM R3 MO MO R3 H R1 H R2

syn (major) E-enolate O aldols irrespective of the enolate geometry 5 Boron Enolates Higher selectivity: cyclic chair TS; 72 top more compact TS larger steric interaction: B-O 1.36-1.47 ; Li-O 1.92-2.00 ; Mg-O 2.01-2.03 ; B > Li > Na > K 74 Table 2.2; however, often lower selectivity with E-enolates Stereoselective preparation: Z- vs E-enolate deprotonation with R2B-X & 3o amines: 73 top factors for E & Z: R2B-X & 3o amines, size of R1 & R2 Z-enolates: CareyB-Chap2-5ed equilibrated boronation of silyl ethers; 73 middle highly stereoselective enolate preparation: ketones, esters

no further chelation to intramolecular electron donor atoms 6 Formation of Z-enolates: Equilibration TMSO (CH3)3C CareyB-Chap2-5ed H CH3 9-BBN-Br BBNO (CH3)3C CH3 H 9-BBN-Br TMSO (CH3)3C CH3 H 7 Other Metal Enolates: Ti, Sn, Zr

Ti enolates: chair TS & stronger chelation; unsymmetrical ketones: more substituted; 75 middle aldehyde & ate complexes: more reactive; 75 top & bot Sn (II) enolates: syn selective; 76 middle good reactivity with ketones: 76 bottom aldol reactions with R3Sn enolates: chair TS; 77 top Zr enolates: Cp2ZrCl2 & R3N / Zr(OtBu)4; 77 bottom CareyB-Chap2-5ed 74 bot cyclic TS but less selective: B > Zr > Li; 78 top 8 Lewis Acid-Catalyzed Aldol Additions Mukaiyama reaction: silyl enol ethers & BF3; 82 top open TS: dependent on the size of R1; 82 bottom other

Lewis acids: Ti/SnCl4, Cp2Ti(OTf)2, R2Sn(OTf)2, Sn/Zn(OTf)2, R3SiOTf-B(OTf)3 or (ArO)2AlR, R3SnClO4, Ph3CClO4 TMSi+: cat. Yb(OTf)3 in aqueous solvent: affinity to C=O; 84 middle InCl 3 : faster ligand exchange & proper acidity; 84 bottom acetals CareyB-Chap2-5ed active catalyst; 83 middle & 84 top as electrophiles: -alkoxy carbonyls; 85 top photolysis of silyl enol ethers with e- acceptors: 86 top other Mukaiyama aldol reactions: 87-88 Scheme 2.2 9 Asymmetric Aldol Additions (I) Stereoselections in aldol addition reactions simple diastereoselection: enolate stereochemistry

cyclic TS: Z-enolates syn & E-enolates anti aldols diastereofacial selection chiral aldehydes & achiral enolates achiral chiral aldehydes & chiral enolates boronates for achiral aldehydes & enolates enantioselective double stereodifferentiation: matched & mismatched chiral CareyB-Chap2-5ed catalytic Mukaiyama aldol additions aldehydes & chiral enolates 10 Asymmetric Aldol Additions (II) Diastereofacial selection: 89 bottom

chiral aldehydes: Felkin-Anh model; 90 top & bottom double-gauche chelation interaction: 3,4-anti with Z-enolates: 91 top control: adjacent heteroatoms; a (syn), (anti), 93 non-chelation with BF3 vs Ti: 94 bottom non-chelating CareyB-Chap2-5ed heteroatoms: polar effects; 96 chiral enolates: Evans oxazolidinones; 115 top TiCl 4 : non-Evans syn aldol anti aldol products 116 middle 11 Asymmetric Aldol with Chiral Aldehydes (A+B)/(C+D): simple diastereoselection (A+C)/(B+D): diastereofacial selection CareyB-Chap2-5ed 12

Asymmetric Aldol Additions (III) Diastereofacial selection (continued) chiral boronates: absolute stereocontrol; 88 other enantioselective Mukaiyama reaction: 89 top chiral CareyB-Chap2-5ed chiral boronates: 86 bottom & 87 bottom catalysts & reactions: Scheme 2.7-2.8 Double stereodifferentiation: 109 top 13 Double Diastereoselection in Aldols (I) Inherent selectivities: chiral aldehydes/enolates O O O + H O

O O Ph OH OH *R Ph 79 : 21 O + OTMS O + Ph *R1 1 O O CareyB-Chap2-5ed O LDA O LDA

H O O R OH O 2 + R * R OH R2* 18 : 78 14 Double Diastereoselection in Aldols (II) Matched pair & mismatched pair O O + H 1 O LDA *R

O O OH O + R * *R1 1 2 *R OH R2* 62 : 28 O O 1 *R CareyB-Chap2-5ed O LDA + H O O

1 *R OH O + R * *R1 2 OH R2* 100 : 0 15 Intramolecular Aldol Reactions Facile cyclization for 5-/6-rings: 134 middle directed cyclization: ring-size & proximity; 135 Sch. 2.10 Robinson annulation: cyclohexenones; 136 middle Michael reaction & aldol condensation: 93 Scheme 2.10 Wieland-Miescher a Mannich base as an enone equivalent: entry 3

favored Michael reactions: a-silyl/thio; entries 6 & 7, 93 bot activation with Lewis acids: 91 bottom (cf. 41 bottom) enantioselective Robinson annulation: 95 middle via CareyB-Chap2-5ed ketone: entry 1; for steroids & terpenes an enamine of L-proline (2 equiv): 95 bottom 16 Robinson Annulation: Hajos (Di)Ketone O O O O KOH + O - H2O KOH O O

O CareyB-Chap2-5ed O O OH 17 Enolate Addition to Imines & Iminiums (I) Reactivity: [C=OH]+ > [C=NR2]+ > C=O > C=NR imines: activated as iminiums under acidic conditions Mannich reaction: 96 middle & 97 Scheme 2.11 Mannich bases: 2o amines; RC(O)CH2-CH2NR2 Eschenmosers salt: Me2N+=CH2 I-; entries 4 & 5 (non-acidic) introduction of an a-methylene group to carbonyls: elimination of NR2; entries 6-9 & 98 middle

dialkylation with 1o amines: 96 bottom application CareyB-Chap2-5ed to tropinone: an alkaloid derivative; 98 bottom 18 Mannich Reactions CareyB-Chap2-5ed 19 Enolate Addition to Imines & Iminiums (II) N-acyl iminium ions: very reactive E+; 99 middle preparation: elimination of a-alkoxyamides reactions with neutral Nu & enolate: 99 bottom & 100 top Knoevenagel condensation: 102 Scheme 2.12 amine-catalyzed: via iminium ions to enones; 100 bottom use of active methylenes with 2 M: 101 top & mid concerted

CareyB-Chap2-5ed decarboxylative condensations: 101 bottom 20 Acylation of Enolates (I) Claisen condensation: -ketoesters; 149 middle thermodynamic: >1 eq. weak base & esters with 2 a-Hs equilibration CareyB-Chap2-5ed control: 150 middle & 151-2 Scheme 2.14 kinetic control: complete formation of enolates; entry 2 Dieckmann condensation: intramolecular; entries 3-8 mixed condensation with different esters: non-enolizable & reactive esters as an acceptor; entries 9-12 Other acylating agents: RCOX, (RCO)2O, RCO(imid.) enolates preformed in inert solvents: 153 Scheme 2.15

reactivity: RCOX > (RCO)2O > RCO-imid. > RCO2R 21 Claisen Condensation between Esters CareyB-Chap2-5ed 22 Acylation of Enolates (II) Other acylating agents (contd): 153 Scheme 2.15 O- vs C-acylation: Weinreb amide & RCO(imid.); 154 top Mg enolate: soluble in ether & C-acylation; entries 1-2 preparation: Mg in EtOH, 2 RMgX & HO2CCH2CO2R ( 152 bottom) or MgCl2 & R3N ( 154 middle) ready decarboxylation: -ketoesters; 152 bottom & entry 10 formylation: HCO2R; -keto aldehydes (hydroxymethylene), 155 middle & 156 Scheme 2.16 entries 1-2 carboxylation of ketones & esters: -ketoacids/esters

CO 2 with MgCl2 & R3N / Mg(O2COMe)2: 154 mid & bot cyanoformates CareyB-Chap2-5ed (Manders reagent): 155 bottom & entry 6 -keto sulfoxides: similar to acylation; 155 bottom applications: similar to CO2R; 156 bottom & 157 top 23 Wittig Reactions (I): R3P+-CR2 Condensation of ylides (ylenes) with carbonyls: 157 R2C=O + Ph3P=CR1R2 R2C= CR1R2 + Ph3P=O mechanism: addition followed by elimination; 158 bottom preparation of ylides: phosphonium salts; 159 top strong

bases for weak carbon acids: unstabilized ylides, more reactive; entries 1-7, 160-161 Scheme 2.17 KOtBu for hindered ketones: entries 10-11 weak bases for -ketophosphonium salts: stabilized ylides, less reactive; entries 8-9 Stereoselectivity in the Wittig Reactions CareyB-Chap2-5ed unstabilized ylidesZ-alkenes; stabilized ylidesE-alkenes 24 Mechanisms of Wittig Olefination betaine oxaphosphetane H CareyB-Chap2-5ed 25 Wittig Reactions (II) Stereoselectivity in the Wittig Reactions (continued)

Z-alkenes: kinetic control; entries 3 & 5 vs 4 salt-free conditions: Na (K) vs Li & aldehydes with branched R E-alkenes: thermodynamic control; entries 8-9 semi-stabilized ylides: intermediate selectivity; entry 6 the Schlosser modification: E-alkenes; 162 middle Z-allylic alcohol with HCHO (Corey): 162 bottom & entry 12 functionalized ylides: entries 13-16, 161 Scheme 2.17 methoxymethylene extended CareyB-Chap2-5ed ylides: aldehydes/ketones; 163 top conjugated double bonds: 163 middle 26 Stereoselectivity of Wittig Olefination (I) concerted mechanism

Ph Ph P Ph H O C 1 R C H R2 tilted approach CareyB-Chap2-5ed Ph Ph P O Ph C H 1 R C 2 R H parallel approach 27

frontier molecular orbital (FMO) theory by Fukui orbital correlation method by Woodward & Hoffmann C C antisymmetric (A) * [4+2] LUMO LUMO symmetric (S) CareyB-Chap2-5ed HOMO C C C C 4* A 3* S

2 A 1 S HOMO 28 Prohibited (Forbidden) Interactions [2+2] C C CareyB-Chap2-5ed C C A * LUMO LUMO S HOMO HOMO A

S 29 [2s+2a] CareyB-Chap2-5ed 30 Stereoselectivity of Wittig Olefination (II) reversible mechanism O O + 1 R PPh3 H H 2 + H C + 1

R 45a CareyB-Chap2-5ed R - O PPh3 PPh3 H R 2 H 1 R R 2 H 45b 31 Modifications of Wittig Reaction

O O + 1) CH2 O R RLi RCHCH PPh3 RCHC PPh3 R' 25C R' 2) 25C H betaine -oxido ylide CareyB-Chap2-5ed CH2OH R' 32 Related Wittig-Type Olefinations (Horner-)Wadsworth-Emmons reaction: phosphonate carbanions with a-M: 167-8 Scheme 2.18 E-alkene, faster rate & soluble byproduct ((RO)3PO2-M+) preparation of phosphonates: Michaelis-Arbuzov reaction deprotonation

with LiCl & R3N: 165-6 & entries 9-10 Z-alkenes by modifications: additives / O=P(OR)2; 165 top intramolecular reactions: rings; 166 middle & entries 7-8 Horner-Wittig reaction: 170 bottom phosphine oxide anion: stable -hydroxy intermediate addition of phosphine oxide anion to carbonyls: Z-alkenes reduction CareyB-Chap2-5ed 164 bottom of -ketophosphine oxide: E-alkenes 33 (Horner-)Wadsworth-Emmons Reaction (RO)3P + R'-X CareyB-Chap2-5ed O R heat (OR)2P R' X- O + R'-X (OR)2P R'

34 Horner-Wittig Reactions CareyB-Chap2-5ed 35 Other Olefination Reactions Peterson reaction: -hydroxylsilanes; 171 middle syn & anti elimination: basic & acidic conditions ; 172 top in-situ elimination: 171 middle & 173-4 Scheme 2.19 selective elimination: faster syn; 172 bottom Julia olefination: -hydroxylsulfones; 175 top Julia-Lythgoe olefination: reductive -elimination; E-alkenes Julia-Kocienski olefination: in-situ syn-elimination; 175 mid 2-sulfonylbenzothiazole CareyB-Chap2-5ed

/ 3,5-bis(trifluoromethyl)phenyl sulfones: 176 Scheme 2.20 36 Sulfur Ylides: R2(O)S+-CH2 Preparation of sulfonium/sulfoxonium ylides deprotonation of sulfonium/sulfoxonium salts: 177 middle Reactions with carbonyls: epoxides; 177 bottom sulfonium ylides: more reactive than sulfoxonium ylides sulfonium CareyB-Chap2-5ed ylides: kinetic; sulfoxonium ylides: thermodynamic enones: 180 Scheme 2.21 & entries 5-6 ( 178 middle) stereoselectivity: axial vs equatorial; 179 top oxaspiropentanes: cyclobutanones; entry 13 & 179 middle

stable sulfur ylides: sulfoximine anions; 179 bottom Reactions with E+: terminal alkenes; 181 top 37 Sulfur Ylides: Preparation & Reactions CareyB-Chap2-5ed 38 Darzens Condensation Reactions CareyB-Chap2-5ed Addition of enolates of a-haloesters: 182 top production of a-epoxyesters: 182 Scheme 2.20 silylepoxides: anions of halomethylsilanes; 182 middle 39 Conjugate Addition of Enolates Electrophilic C=C-/CC-EWG: 185 Scheme 2.23 Michael reactions: basic catalysis & reversible; 183 bot EWGs:

carbonyls, nitro, cyano & sulfonyl thermodynamic enolates: catalytic amount of base, active hydrogen with 2 M groups, weak base (F-: 186 top) kinetic enolates: quantitative formation of enolates & 1,5dicarbonyl products; 187 Scheme 2.24 1,2- vs 1,4-addition: -78 oC vs 25 oC; entry 3 good CareyB-Chap2-5ed Michael acceptors: a-stabilizing group; Si, S, S=O, CN 40 Conjugate Addition of Enolates (II) - O H X O + R' Z R

R more basic H Y C CH2 R1 Y CHR1 + CH2 C Z R2 O - RC-CCHCH=CR" R' CareyB-Chap2-5ed O RC CR2 + H C Z R2 R' O Z R H Y C CH2 + R2CH Z R1

O- R O R'CH CHC C CR R" R O R'CH CHCR" 1,2-addition 1,4-addition ArCHC N + Li Z S-H - less basic O R' R' O PhCH CHCCH3 [1,2-anion] [1,4-anion] H+ NC O CH3 Ar

Ph 41 Stereoselectivity in Conjugate Additions CareyB-Chap2-5ed Diastereoselective conjugate addition: 188 middle anti Z-enolates & syn E-enolates: chelation control enhanced selectivity with Ti(i-PrO)4: 191 bottom cyclic enamines: axial attack (stereoelectronic); 193 mid addition of organometallics: 1,2- vs 1,4-; 197 mid-198 top Absolute facial selectivity of enones substrate control: 193 bottom, 197 top & 196 bottom reagent control: chiral bis-oxazoline cat.; 196 middle

42 Conjugate Addition of Enolate Equivalents Tandem reactions: 189 bottom- 190 top successive addition-alkylation: trans stereoselectivity Lewis acid-catalyzed conjugate additions: 190-1 Mukaiyama-Michael reactions: [Ti], [Mg], [Li]; anti (open TS) nitro F- CareyB-Chap2-5ed groups as an oxo equivalent: 1,4-diketones; 192 bot as an activator: anionic enolates; 193 top Conjugate addition of CN [-COY or -CH2NH2] reactive -CN: Et3Al-HCN, Et2Al-CN; 199 top stereoselective addition: 199 bottom 43

Recently Viewed Presentations

  • The way of skeptical knowing (Kovach & Rosenstiel)

    The way of skeptical knowing (Kovach & Rosenstiel)

    The way of skeptical knowing (Kovach & Rosenstiel) What kind of content am I encountering? Is the information complete; if not, what is missing? Who or what are the sources, and why should I believe them? What evidence is presented,...
  • Lect 02 Energy and Biomass Forms and Conservation

    Lect 02 Energy and Biomass Forms and Conservation

    * * * * * * * * Primary productivity in terrestrial ecosystems. Primary productivity in terrestrial ecosystems is often related to average annual temperature and precipitation. The colored bars represent the ranges for representative high latitude (tundra), middle latitude...
  • tropism powerpoint - Ms. Mattson's Class Website

    tropism powerpoint - Ms. Mattson's Class Website

    3 main types. TROPISM. Plant growth in response to a stimulus ("tropo" - "turn") *Can be positive or negative. GEOTROPISM. Geotropism. is the growth of a plant in response to gravity. Positive Geotropism.
  • Recall Lecture 8  Full Wave Rectifier  Center tapped

    Recall Lecture 8 Full Wave Rectifier Center tapped

    Example: Half Wave Rectifier. Given a half wave rectifier with input primary voltage,V. p = 80 sin t and the transformer turns ratio, N 1 /N 2 = 6.. If the diode is ideal diode, (V = 0V), determine the...
  • Song Analysis -

    Song Analysis -

    My favourite lyrics are "sometimes you bend, sometimes you stand, sometimes you turn your back to the wind, there's a world outside every darkened door, where blues wont haunt you anymore" these are my favourite lyrics because I can relate...
  • Victorian Period - Woodland Hills School District

    Victorian Period - Woodland Hills School District

    Victorian Period Victorian writing reflects the dangers and benefits to rapid industrialization, while encouraging readers to examine closely their own understanding of the era's progress. ... The Comedic Ladder Comedy of Ideas (high comedy) Characters argue about ideas like politics,...
  • Epistemology -

    Epistemology -

    reliabilism. But then the conceptual analysis of classical epistemology is still required, namely conceptual analysis that characterizes knowledge as reliably produced true belief. Quine might respond that he didn't eliminate but dethrone such analysis . Quine may accept a ....

    Introduction. Tell us your name. Where you teach and grade level.