# Chapter 4 Fundamentals of Digital Audio

Chapter 4 Fundamentals of Digital Audio 1 Sound A wave that is generated by vibrating objects in a medium such as air Examples of vibrating objects: vocal cords of a person guitar strings tunning fork

2 Frequency of Sound Wave Refers to the number of complete back-andforth cycles of vibrational motion of the medium particles per unit of time Unit for frequency: Hz (Hertz) 1 Hz = 1 cycle/second 3 A Cycle a cycle

a cycle a cycle a cycle 4 Frequency Suppose it is1 second a cycle a cycle

Frequency = 2 Hz (i.e., 2 cycles/second) 5 Frequency Suppose it is1 second a cycle a cycle a cycle

a cycle Frequency = 4 Hz (i.e., 4 cycles/second) Higher frequency than the previous waveform. 6 Pitch of Sound Sound frequency Higher frequency: higher pitch human ear can hear sound ranging from 20 Hz to 20,000 Hz

7 Sound Intensity vs. Loudness Sound intensity: an objective measurement can be measured with auditory devices in decibels (dB) Loudness: a subjective perception measured by human listeners human ears have different sensitivity to different sound frequency

in general, higher sound intensity means louder sound 8 Application of Decibels Many audio-editing programs use decibels for the audio amplitude 0 dB: Threshold of hearing minimum sound pressure level at which humans can hear a sound at a given frequency does NOT mean zero sound intensity does NOT mean absence of sound wave

about 120 dB: threshold of pain sound intensity that is 1012 times greater than 0 dB 9 Adding Sound Waves A sinlge sine wave waveform A single tone A second sinlge sine wave waveform A second single tone A more complex waveform

A more complex sound 10 Waveform Example A waveform of the spoken word "one" 11 Waveform Example Let's zoom in to take a closer look

12 Waveform Example A closer look 13 Step 1. Sampling The sound wave is sampled at a specific rate into discrete samples of amplitude values.

14 Step 1. Sampling The sound wave is sampled at a specific rate into discrete samples of amplitude values. Suppose we sample the waveform 10 times a second, i.e., sampleing rate = 10 Hz. 15 Step 1. Sampling The sound wave is sampled at a specific rate into

discrete samples of amplitude values. Suppose we sample the waveform 10 times a second, i.e., sampleing rate = 10 Hz. We get 10 samples per second. 16 Step 1. Sampling The sound wave is sampled at a specific rate into discrete samples of amplitude values. Reconstructing the waveform using the discrete sample points.

17 Step 1. Sampling What if we sample 20 times a second, i.e., sampling rate = 20 Hz? We get 20 samples per second. 18 Step 1. Sampling What if we sample 20 times a second, i.e.,

sampling rate = 20 Hz? Reconstructing the waveform using the discrete sample points. 19 Effects of Sampling Rate original waveform sampling rate = 10 Hz sampling rate = 20 Hz

20 Effects of Sampling Rate Higher sampling rate: The reconstructed wave looks closer to the original wave More sample points, and thus larger file size 21 Sampling Rate Examples 11,025 Hz AM Radio Quality/Speech

22,050 Hz Near FM Radio Quality (high-end multimedia) 44,100 Hz CD Quality 48,000 Hz DAT (digital audio tape) Quality 96,000 Hz DVD-Audio Quality 192,000 Hz DVD-Audio Quality 22 Step 2. Quantization Each of the discrete samples of amplitude values obtained from the sampling step are mapped and rounded to the nearest value on a scale of discrete levels. The number of levels in the scale is expressed in bit

depth--the power of 2. An 8-bit audio allows 28 = 256 possible levels in the scale CD-quality audio is 16-bit (i.e., 216 = 65,536 possible levels) 23 Step 2. Quantization Suppose we are quantizing the samples using 3 bits (i.e. 23 = 8 levels). 24 Step 2. Quantization Now, round each sample to the nearest level.

25 Step 2. Quantization Now, reconstruct the waveform using the quantized samples. 26 Effects of Quantization Data with different original amplitudes may be quantized onto the same level loss of subtle differences of samples

With lower bit depth, samples with larger differences may also be quantized onto the same level. 27 Bit Depth Bit depth of a digital audio is also referred to as resolution. For digital audio, higher resolution means higher bit depth. 28

Dynamic Range The range of the scale, from the lowest to highest possible quantization values In the previous example: 29 Choices of Sampling Rate and Bit Depth Higher sampling rate and bit depth: deliver better fidelity of a digitized file result in a larger file size (undesirable)

30 Estimating 1-minute CD Quality Audio Sampling rate = 44100 Hz (i.e., 44,100 samples/second) Bit depth = 16 (i.e., 16 bits/sample) Stereo (i.e., 2 channels: left and right channels) 31 File Size of 1-min CD-quality Audio

1 minute = 60 seconds Total number of samples = 60 seconds 44,100 samples/second = 2,646,000 samples Total number of bits required for these many samples = 2,646,000 samples 16 bits/sample = 42,336,000 bits This is for one channel. Total bits for two channels = 42,336,000 bits/channel 2 channels = 84,672,000 bits 32

File Size of 1-min CD-quality Audio 84,672,000 bits = 84,672,000 bits / (8 bits/byte) = 10,584,000 bytes = 10,584,000 bytes / (1024 bytes/KB) 10336 KB = 10336 KB / (1024 KB/MB) 10 MB 33 General Strategies to Reduce Digital Media File Size

Reduce sampling rate Reduce bit depth Apply compression For digital audio, these can also be options: reducing the number of channels shorten the length of the audio 34 Reduce Sampling Rate Sacrifices the fidelity of the digitized audio Need to weigh the quality against the file size Need to consider:

human perception of the audio (e.g., How perceptibe is the audio with lower sampling rate?) how the audio is used music: may need higher sampling rate short sound clips such as explosion and looping ambient background noise: may work well with lower sampling rate 35 Human Hearing Range Human hearing range: 20 Hz to 20,000 Hz Most sensitive to 2,000 Hz to 5,000 Hz

36 Nyquist Theorem We must sample at least 2 points in each sound wave cycle to be able to reconstruct the sound wave satisfactorily. Sampling rate of the audio twice of the audio frequency (called a Nyquist rate) Sampling rate of the audio is higher for audio with higher pitch 37 Most Common Choices of Bit Depth

8-bit usually sufficient for speech in general, too low for music 16-bit minimal bit depth for music 24-bit 32-bit 38 Audio File Compression

Lossless Lossy gets rid of some data, but human perception is taken into consideration so that the data removed causes the least noticeable distortion e.g. MP3 (good compression rate while preserving the perceivably high quality of the audio) 39 Common Audio File Types File Type

Acronym For .wav Originally Created By File Info & Compression Platforms IBM

Microsoft Compressed or uncompressed One of the HTML5 audio formats Windows Plays in Web browsers that support the .wav format of HTML5 audio (Firefox, Safari, Chrome, and

Opera) .mp3 MPEG audio layer 3 Moving Pictures Experts Group Good compression rate with perceivably high quality sound One of the HTML5

audio formats Cross-platform Plays in Web browsers that support the .wav format of HTML5 audio (Safari and IE) .m4a MPEG-4 format without the video

data Moving Pictures Experts Group AAC compression; same compression as the MPEG-4 H.264 without the video data One of the HTML5 audio formats

Plays in Web browsers that support the AAC format of HTML5 audio (Safari, IE, and Chrome) 40 Common Audio File Types File Type Acronym For

.ogg or .oga .mov QuickTime movie Originally Created By File Info & Compression Platforms

Xiph.Org Foundation Usually referred to as Ogg Vorbis format One of the HTML5 audio formats Plays in Web browsers that support the Ogg Vorbisformat of HTML5 audio (Firefox, Chrome, and

Opera) Apple Not just for video supports audio track and a MIDI track a variety of sound compressors files can be streamed "Fast Start" technology

Cross-platform; requires QuickTime player 41 Common Audio File Types File Type Acronym For Originally

Created By File Info & Compression Platforms .aiff Audio Interchange File Format Apple

compressed, uncompressed Mac, Windows Sun compressed Sun, Unix, Linux compressed; can be

streamed with Real Server Cross-platform; requires Real player .au .snd .ra .rm Real Audio

Real Systems .wma Window Media Audio Microsoft 42 Choosing an Audio File Type Determined by the intended use File size limitation

Intended audience Whether as a source file Is your audio used on the Web? file types that offer high compression streaming audio file types 43 Intended Audience What is the equipment that your audience will use to listen to your audio? If they are listening on computers, what are their operating systems?

cross-platform vs. single platform If you are keeping the file for future editing, choose a file type: uncompressed allows lossless compression 44

## Recently Viewed Presentations

• Japanese geography. Japan lies to the east of China "Land of the Rising Sun" 4,000 islands make up the Japanese archipelago but most Japanese live on the four largest ones. Spans 1200 miles. Land is mountainous and only 15% is...
• Exterior Angles of Polygons Interior Angles ... 45o 45o 45o 45o 45o Exterior Angles of Polygons Septagon/Heptagon Decagon Hendecagon Dodecagon Hexadecagon Icosagon 7 sides 10 sides 11 sides 12 sides 16 sides 20 sides 9 sides Nonagon 51.4o/128.6o 40o/140o 36o/144o...
• Chapter 2â€”Understanding Individual Differences ... to seek favorable judgments and avoid negative judgments. ... Slide 2.11 Individual Differences in Ethical Behavior Cognitive moral development Types of management ethics Immoral management Moral management Amoral management Slide 2.12 ...
• Long poems and long musical compositions are italicized, not quoted. As a rule of thumb, you italicize the title of any poem long enough to be published in a separate volume. Such poems are usually divided into titled or numbered...
• Former sheriff's office detective brought suit against, among others, his estranged wife and the sheriff, alleging violations of the Fourth Amendment and various state law torts including invasion of privacy regarding information extracted from an old cell phone left at...
• The Spanish Caribbean (cont.) The search for gold proved elusive, but the Spanish by the mid-1500s would find a mother lode of silver in Mexico and especially Peru.. The Spanish Caribbean thus became less of a focus - except for...
• The CAP reform of 2014 is overly . too complex. In particular on . greening. even if farmers have supported it, its implementation is . not simple nor straightforward . for them. We support Commissioner Hogan's exercise to simplify the...
• Order writes per-thread & per-location Set of possible values at each load Java Issues Remaining Run-time system memory model issues New threads start with parent's state GC responsible for its own synchronization EndCon for object pre-initialization Thread-safe Library code Code...