Chapter 5. An Overview of Organic Reactions

Chapter 5. An Overview of Organic Reactions

5. An Overview of Organic Reactions Based on McMurrys Organic Chemistry, 7th edition Why this chapter? To understand organic and/or biochemistry, it is necessary to know: -What occurs -Why and how chemical reactions take place We will see how a reaction can be described

2 5.1 Kinds of Organic Reactions In general, we look at what occurs and try to learn how it happens Common patterns describe the changes Addition reactions two molecules combine Elimination reactions one molecule splits into two

3 Substitution parts from two molecules exchange 4 Rearrangement reactions a molecule undergoes changes in the way its atoms are connected

5 5.2 How Organic Reactions Occur: Mechanisms In a clock the hands move but the mechanism behind the face is what causes the movement In an organic reaction, we see the transformation that has occurred. The mechanism describes the steps behind the changes that we can observe Reactions occur in defined steps that lead from reactant to product

6 Steps in Mechanisms We classify the types of steps in a sequence A step involves either the formation or breaking of a covalent bond Steps can occur in individually or in combination with other steps When several steps occur at the same time they are said to be concerted 7

Types of Steps in Reaction Mechanisms Bond formation or breakage can be symmetrical or unsymetrical Symmetrical- homolytic Unsymmetrical- heterolytic 8 Indicating Steps in Mechanisms Curved arrows indicate breaking

and forming of bonds Arrowheads with a half head (fish-hook) indicate homolytic and homogenic steps (called radical processes) Arrowheads with a complete head indicate heterolytic and heterogenic steps (called polar processes) 9

5.3 Radical Reactions Not as common as polar reactions Radicals react to complete electron octet of valence shell A radical can break a bond in another molecule and abstract a partner with an electron, giving substitution in the original molecule A radical can add to an alkene to give a new radical, causing an addition reaction 10

Steps in Radical Substitution Three types of steps Initiation homolytic formation of two reactive species with unpaired electrons Propagation reaction with molecule to generate radical

Example formation of Cl atoms form Cl2 and light Example - reaction of chlorine atom with methane to give HCl and CH3. Termination combination of two radicals to form a stable product: CH3. + CH3. CH3CH3 11 Steps in Radical Substitution

Termination combination of two radicals to form a stable product: CH3. + CH3. CH3CH3 12 5.4 Polar Reactions Molecules can contain local unsymmetrical electron distributions due to differences in electronegativities This causes a partial negative charge on an atom and a compensating partial positive charge on an adjacent atom The more electronegative atom has the greater electron

density Elements such as O, F, N, Cl more electronegative than carbon 13 14 Polarizability Polarization is a change in electron distribution as a response to change in electronic nature of the

surroundings Polarizability is the tendency to undergo polarization Polar reactions occur between regions of high electron density and regions of low electron density 15 Generalized Polar Reactions An electrophile, an electron-poor species, combines with a nucleophile, an electron-rich species An electrophile is a Lewis acid A nucleophile is a Lewis base

The combination is indicate with a curved arrow from nucleophile to electrophile 16 17 5.5 An Example of a Polar Reaction: Addition of HBr to Ethylene HBr adds to the part of C-C double bond The bond is electron-rich, allowing it to function as a nucleophile

H-Br is electron deficient at the H since Br is much more electronegative, making HBr an electrophile 18 Mechanism of Addition of HBr to Ethylene HBr electrophile is attacked by electrons of ethylene (nucleophile) to form a carbocation intermediate and bromide ion

Bromide adds to the positive center of the carbocation, which is an electrophile, forming a C-Br bond The result is that ethylene and HBr combine to form bromoethane All polar reactions occur by combination of an electronrich site of a nucleophile and an electron-deficient site of an electrophile 19

5.6 Using Curved Arrows in Polar Reaction Mechanisms Curved arrows are a way to keep track of changes in bonding in polar reaction The arrows track electron movement Electrons always move in pairs Charges change during the reaction

One curved arrow corresponds to one step in a reaction mechanism 20 Rules for Using Curved Arrows The arrow goes from the nucleophilic reaction site to the electrophilic reaction site The nucleophilic site can be neutral or negatively charged 21

The electrophilic site can be neutral or positively charged The octet rule must be followed 22 5.7 Describing a Reaction: Equilibria, Rates, and Energy Changes Reactions can go either forward or backward

to reach equilibrium The multiplied concentrations of the products divided by the multiplied concentrations of the reactant is the equilibrium constant, Keq Each concentration is raised to the power of its coefficient in the balanced equation. aA++ bB bB

aA cC cC++dD dD 23 Magnitudes of Equilibrium Constants If the value of Keq is greater than 1, this indicates that at equilibrium most of the material is present as products

If Keq is 10, then the concentration of the product is ten times that of the reactant A value of Keq less than one indicates that at equilibrium most of the material is present as the reactant If Keq is 0.10, then the concentration of the reactant is ten times that of the product 24 Free Energy and Equilibrium The ratio of products to reactants is controlled by

their relative Gibbs free energy This energy is released on the favored side of an equilibrium reaction The change in Gibbs free energy between products and reacts is written as DG If Keq > 1, energy is released to the surroundings (exergonic reaction) If Keq < 1, energy is absorbed from the surroundings (endergonic reaction)

25 Numeric Relationship of Keq and Free Energy Change The standard free energy change at 1 atm pressure and 298 K is DG The relationship between free energy change and an equilibrium constant is: DG = - RT ln Keq where

R = 1.987 cal/(K x mol) T = temperature in Kelvin ln Keq = natural logarithm of Keq 26 27 5.8 Describing a Reaction: Bond Dissociation Energies Bond dissociation energy (D): amount of energy

required to break a given bond to produce two radical fragments when the molecule is in the gas phase at 25 C The energy is mostly determined by the type of bond, independent of the molecule The C-H bond in methane requires a net heat input of 105 kcal/mol to be broken at 25 C. Table 5.3 lists energies for many bond types Changes in bonds can be used to calculate net changes in heat

28 5.9 Describing a Reaction: Energy Diagrams and Transition States The highest energy point in a reaction step is called the transition state The energy needed to go from reactant to transition state is the

activation energy (DG) 29 First Step in Addition In the addition of HBr the (conceptual) transition-state structure for the first step The bond between

carbons begins to break The CH bond begins to form The HBr bond begins to break 30 5.10 Describing a Reaction: Intermediates If a reaction occurs in more

than one step, it must involve species that are neither the reactant nor the final product These are called reaction intermediates or simply intermediates Each step has its own free energy of activation The complete diagram for the reaction shows the free energy changes associated with an intermediate

31 5.11 A Comparison between Biological Reactions and Laboratory Reactions Laboratory reactions usually carried out in organic solvent

Biological reactions in aqueous medium inside cells They are promoted by catalysts that lower the activation barrier The catalysts are usually proteins, called enzymes Enzymes provide an alternative mechanism that is compatible with the conditions of life 32


Recently Viewed Presentations

  • HR Structure April 2014 Resource Centre Medical Staffing

    HR Structure April 2014 Resource Centre Medical Staffing

    HR Structure . Medical Staffing . Recruitment . Payroll. Revalidation. Job Plans/PDRs. AACs. Integrated Identity Management. ESR Development. E-rostering(Medical)
  • A Remedial English Grammar - lsp4you

    A Remedial English Grammar - lsp4you

  • Category management CTM Altromercato -

    Category management CTM Altromercato -

    Distribution Analysis analizza come la distribuzione di un determinato prodotto o categoria posso influenzare gli spazi dedicati nel singolo punto vendita. Market Analysis effettua analisi di mercato sulle performance dei prodotti in relazione al pubblico, permettendo di individuare le categorie...
  • Ideen für Sublima - Agenda (Indico)

    Ideen für Sublima - Agenda (Indico)

    Pisa Meeting 2015 - Isola d'Elba, 24-30.05.2015, I. Sacco. Successfully operated a very compact gamma-detection module . The module contains ALL functionalities for a MR compatible PET. readout: SiPMs, ADCs, TDCs, Cooling.
  • Reinforcement Learning and Understanding AlphaGo Ms. Hadar Gorodissky

    Reinforcement Learning and Understanding AlphaGo Ms. Hadar Gorodissky

    Reinforcement Learningand Understanding AlphaGo. Ms. HadarGorodissky. Mr. NivHaim. Check that there are board markers! Write topics on the board. Lecture I Flow. MDP (review of Ng lecture) Model parameters. Solution concepts. Value iteration. Policy iteration.
  • Tomb of Nebamun, 18th Dynasty, c. 1350 BC,

    Tomb of Nebamun, 18th Dynasty, c. 1350 BC,

    Nebamun fowling in the marshes, Tomb of Nebamun, 18th Dynasty, c. 1350 BC, Official of Tuthmosis IV, and Amenhotep III, Western Thebes, British Museum. ... From the Outer Room of the Tomb-Chapel of Nebamun, a scene of Offerings.
  • Arena Blended Connected (ABC) curriculum design Clive Young

    Arena Blended Connected (ABC) curriculum design Clive Young

    The ABC curriculum design method is an effective and engaging hands-on, card-based approach to curriculum design. student centered rapid curriculum development engaging academics in informed dialogue about the learning design or a review of programmesand modules
  • World War I

    World War I

    Arial Calibri Default Design World War I The Seeds of War Section 1 Terms to Define People to Know Places to Locate Section Theme Overview European Countries in the War Overview European Rivalries European Rivalries European Rivalries European Rivalries Nationalism...