Especialista Universitario en Energías Renovables Biomasa

Especialista Universitario en Energías Renovables Biomasa

ENERGAS RENOVABLES BIOMASA Produccin de combustibles lquidos de la biomasa Dr. Roberto Best y Brown CREVER-Universidad Rovira i Virgili CIE-UNAM Abril 2005 Produccin de combustibles lquidos de la biomasa Uno de las objetivos principales de la bioenerga es la bsqueda de combustibles lquidos como sustitutos de productos derivados del petrleo Hay tres tecnologas que se utilizan actualmente para esta produccion: Pirlisis (Termoqumica) Sntesis y Fermentacin Pirlisis para la produccin de bioaceites

La pirlisis es el mtodo mas antiguo de procesar un combustible para producir un combustible de mejor calidad La pirlisis lenta reduce la madera en carbn El trmino pirlisis se aplica ahora al proceso de colectar los componentes voltiles y condensarlos para producir un combustible lquido o bio-aceite. Con ausencia de aire se calienta sin quemar y minimizar la gasificacin y producir un bioaceite Pirlisis para la produccin de bio-aceites El bioaceite producido tiene un contenido energtico del orden de la mitad del petrleo y

contiene contaminantes cidos que deben removerse. Unas variacin del proceso bsico es la Solvolisis, el uso de solventes organicos a 200-300C para dislover los slidos y obtener un producto parecido al petrleo Otra es la llamada Pirolisis rpida que se lleva a cabo de 500 -1300C y altas presiones (50 a 150 atm.) Recientemente se esta investigando la pirlisis de RSU, pero es an muy costosa (con respecto a la incineracin) Sntesis de combustibles Un gasificador que utiliza oxigeno en vez de aire puede producir un gas consistente principalmente de H2, CO y CO2 y el inters de esto radica en el hecho en que la remocin del CO2 permite a la mezcla llamar gas de sntesis del cual casi cualquier hidrocarburo puede ser sintetizado. La reaccin el H2 y el CO es una manera de producir metano puro 2CO + 2H2 CH4 +CO2

Otro producto posible es el metanol. La produccin de metanol de esta forma involucra una serie de procesos qumicos sofisticados a altas temperaturas y presiones y es importante por que es un sustituto directo de la gasolina. Sntesis de combustibles lquidos (por Gasificacin) Un proceso de gasificacin usando oxgeno en lugar de aire produce un gas consistente en gran parte por H2, CO y CO2. La remocin de CO2 e impurezas como tar, metano y trazas de azufre, deja una mezcla muy activa de H2 y CO llamada Gas de Sntesis con la cual se puede sintetizar cualquier hidrocarburo Sntesis de combustibles lquidos (por Gasificacin)

El primer paso es ajustar las proporciones de los componentes (shift reaction): Ejemplo: para formar metanol CH3OH, :2 moleculas de H2 por cada una de CO (2:1). Un proceso conocido desde 1929 como FischerTropsch consiste en hacer pasar los dos componentes sobre un catalizador a temperatura y presin alta y el producto una mezcla de hidrocarburos producido inicialmete un gas, se condensa. Gasificacin con desechos de cultivos temporales El bagazo tiene un significante potencial como biomasa para combustible. La mayora de los ingenios utilizan el bagazo como fuente para elevar la temperatura del vapor, este bagazo es quemado ineficientemente. Muchos ingenios producen tambin electricidad para satisfacer sus propias necesidades. La cscara de arroz es el residuo agrcola ms comn de el mundo. La textura uniforme de la cscara se presta para tecnologas tales como la gasificacin. Gasificadores de cscara de arroz han sido exitosamente operados en Indonesia, China y Mali. La industria procesadora del coco, en muchos pases proporcionan grandes cantidades de desechos finos y speros. La fibra del coco se utiliza par gasificacin en Tailandia con xito limitado debido a

la baja densidad del sustrato. Los desechos finos del coco son ms prometedores como biocombustibles. Fermentacin para produccin de etanol A partir del ao 2000 se ha incrementado la produccin de etanol Principalmente en Brasil y EEUU, aunque tambin en Europa (Abengoa en Castillo y Len) ENERGAS RENOVABLES BIOMASA FORMAS DE EXTRACCION DE LA ENERGIA A PARTIR DE BIOMASA (cont.) PROCESO MEDIANTE EL CUAL LOS AZUCARES SON CONVERTIDOS EN ALCOHOLES MEDIANTE REACCIONES BIOLOGICAS ANAEROBIAS

5.- FERMENTACION AZUCARES Hidrlisis ETANOL Fermentacin Destilacin BIOMASA Uso directo o diluente de gasolina RENDIMIENTOS EN ETANOL MATERIA PRIMA LITROS/ton Litros/ha*ao Caa de Azcar 70

400 12000 Maz 360 250 2000 Yuca (raz) 180 500 4000 Papa (dulce) 120 1000 4500 Madera 160 160 - 4000

Fermentacin La fermentacin es un proceso anaerbico biolgico en el cual el azcar es convertida en alcohol por la accin de un micro-organismo. El alcohol resultante es etanol (C2H5OH) en mayor proporcin que el metanol (CH3OH) que pueden ser utilizados en mquinas de combustin interna y directamente en mquinas modificadas apropiadamente o como extendedorasde gasolina en el gasohol: gasolina con el 20 % de etanol. La mejor fuente conocida de etanol es la caa azcar o la melaza obtenida despus de que se ha extrado el jugo de la caa. El producto resultante de la fermentacin contiene nicamente cerca del 10 % de etanol, que debe ser destilado antes de ser utilizado como combustible. El contenido energtico del producto final es cercano a 30 GJ t-1 o 24 GJ m-3. El proceso completo requiere una considerable cantidad de calor, el cual es suministrado por desperdicios de cultivos. La prdida energtica en la fermentacin es substancial , pero esto puede ser compensado por la conveniente transportabilidad del combustible lquido y por el competitivo bajo costo y la familiaridad de la tecnologa. PRODUCCIN DE COMBUSTIBLE LIQUIDO POR FERMENTACIN Proceso anaerbico-biolgico. Los azucares (C6H12O6), se convierten en alcohol por la accin de microorganismos

generalmente, una levadura. El producto etanol (C2H5OH) se separa de otros componentes por destilacin. En proporciones de 25% se puede mezclar con petrleo, Gasohol, o se puede modificar la carburacin del motor para utilizarlo directamente. PRODUCCIN DE COMBUSTIBLE LIQUIDO POR FERMENTACIN La biomasa mas utilizada es la caa de azucar, Brasil es el mayor productor de Gasohol. Plantas ricas en almidn como principal carbohidrato ( patata, maiz, trigo), requiere como proceso inicial: la conversin de almidn en azcar, proceso que siguen en USA y Europa. La madera puede utilizarse pero es ms costoso actualmente (hidrlisis) Bioetanol de biomasa no comestible Biocarburante etanol a partir de recursos de biomasa no

comestibles Requiere de nuevas tecnologas para: Hidrolizar (romper) la celulosa y la hemicelulosa en azcar Fermentar las azucares inusuales de la biomasa PRODUCCIN DE COMBUSTIBLE LIQUIDO POR FERMENTACIN El producto es 10% etanol que debe destilarse. El proceso requiere una gran cantidad de energa trmica, que se obtiene de la quema de los residuos, (por ej:bagazo). El contenido energtico del etanol es de 30 GJ/ton o de 24 MJ/ litro (34 MJ/litro petrleo)

PRODUCCIN DE COMBUSTIBLE LIQUIDO POR FERMENTACIN Rendimento en la produccin de etanol Material Inicial Caa de azucar (cosechada) Litros / ton1 Litros / ha-ao 2 70 400-12.000 Maiz (grano) 360 250-2.000 Casava (raz) 180 500-4000

Patata dulce (raiz) 120 1.000- 4.500 Madera 160 160-4.0003 1 Depende principalmente en la proporcin de mateia inicial que puede fermentarse 2 El rango refleja las diferencias en rendimiento a nivel mundial 3 El valor alto es un maximo aun teorico El bioetanol como combustible El etanol como combustible en vehculos se utiliza al menos en cuatro formas: Etanol anhidro (100 % etanol) Etanol hidro (95% etanol 5% agua) Mezclas etanol anhidro-gasolinas (10-20% etanol) Como materia prima para etil tera-butil eter

(ETBE), aditivo oxigenado como sustituto del MTBE obtenido a partir del metanol El bioetanol como combustible En E.E.U.U. y CANADA se vende una mezcla de 10% de alcohol anhidro con gasolina llamado gasohol En Brasil el 90% de los autos tienen motores especialmente diseados para operar con hidro-etanol (al 95%). Bioetanol de residuos agroindustriales Energa fsil para conducir una milla Aceites vegetales a biodiesel La mayor parte de la produccin de biodiesel es a travs de semillas de plantas, colza, girasol. En Europa donde el 50% de los coches nuevos son diesel se ha

incrementado el inters en su produccin a diferencia de USA donde solo 1% de los coches son diesel. PRODUCCIN DE BIODIESEL En 1911 el Dr. Rudolf Diesel escribi: la mquina diesel puede ser alimentada con aceites vegetales y puede ayudar considerablenete al desarrollo de la agricultura de los pases que lo utilizen Demostr su funcionamiento con una gran cantidad de aceites entre ellos el de cacahuate, sin embargo el petrleo barato domin el mercado PRODUCCIN DE BIODIESEL Los aceites vegetales ocurren naturalmente en las semillas de varias plantas, y se extraen por prensado o utilizando un disolvente.

El contenido energtico es del orden de 37-39 GJ /ton, un poco menor al del diesel (42 GJ / ton) PRODUCCIN DE BIODIESEL Aunque se puede quemar directamente o mezclado con diesel, la combustion incompleta puede causar problemas por carbonizacin en los cilindros, por lo que conviene su conversin a Biodiesel. El proceso se conoce como esterificacin.. PRODUCCIN DE BIODIESEL La esterificacin es el mtodo mas sencillo y consiste en

mezclar el aceite con un exceso de metanol (la relacin estequiomtrica es de tres moles de alcohol por mol de aceite) en presencia de un catalizador de la reaccin que suele ser KOH. Poniendo doble cantidad de alcohol (que es normal) se necesita un tiempo comprendido entre 1 a 8 horas (segn la temperatura) para obtener el metilster, a la vez que una fase acuosa a base de glicerina. 100 kg de aceite y 11 kg de metanol con catalizador producen en una hora (a 70C) una cantidad de 100 kg de dister (sinnimo de biodisel, contraccin de diesel y y ster) y 11 kg de glicerina. La glicerina tiene un valor comercial bajo por sobreproduccin. PRODUCCIN DE BIODIESEL Aceite + Metanol Metilester + Glicerina Considerando 3 ton/ha de semilla de colza con un porcentaje de 40% de aceite se obtiene una produccin neta de 1.200 kg/ao de combustible, (1.300 litros). Adems de 1.800 kg de torta til para

alimentacin animal, as como 3 toneladas de paja. Esto representa en cuanto a cantidad total de combustible entre 1.900 y 2.500 kg de petrleo por hectrea PRODUCCIN DE BIODIESEL Proceso de transesterificacin de aceite para produccin de biodiesel Planta de metilster PRODUCCIN DE BIODIESEL Las fuentes importantes para produccin de biodiesel son la colza (rape seed), girasol y recientemente el aceite comestible reciclado ENERGAS

RENOVABLES 2. SITUACIN EN ESPAA DOS PLANTAS DE PRODUCCIN DE BIOETANOL Y TRES DE BIODIESEL EL BIOETANOL SE USA SOBRE TODO PARA PRODUCIR ETBE, MIENTRAS QUE EL BIODIESEL SE EMPLEA EN FLOTAS CAUTIVAS Y ES VENDIDO EN ALGUNAS ESTACIONES DE SERVICIO 2.4. rea de biocarburantes PRODUCCIN DE BIOCARBURANTES A FINALES DE 2003 16.200 TEP 64.500 TEP 50.400 TEP 51.200 TEP

TOTAL: 182.300 TEP ENERGAS 2. SITUACIN EN ESPAA RENOVABLES 2.4. rea de biocarburantes OBJETIVO ENERGTICO POR COMUNIDADES AUTONOMAS Potencial tcnico-econmico: 640.000 tep Bioetanol: 600.000 tep Biodiesel: 40.000 tep Objetivo del Plan de Fomento (ao 2010): 500.000 tep Bioetanol: 400.000 tep Biodiesel: 100.000 tep Comunidad Objetivo energtico

Autnoma en el 2010 (TEP) Andaluca 100.000 Aragn 50.000 Asturias 0 Baleares 0 Canarias 0 Cantabria 0 Castilla y Len 100.000 Castilla-La Mancha 50.000 Catalua 50.000 Extremadura 50.000 Galicia 50.000 Madrid 0

Murcia 50.000 Navarra 0 Pas Vasco 0 Rioja, La 0 Valenciana, C. 0 Ceuta y Melilla 0 TOTAL 500.000 Fuente: Elaboracin interna IDAE ENERGAS RENOVABLES 2. SITUACIN EN ESPAA 2.4. rea de biocarburantes

EVOLUCIN DE LA PRODUCCIN DE BIOCARBURANTES Y PERSPECTIVAS (Ktep) 550 500,0 500 450 400 350 300 250 182,3 200 121,1 150 100 50 0,0 0,0

1998 1999 51,2 51,2 2000 2001 0 2002 2003 2010 ENERGAS RENOVABLES 2. SITUACIN EN ESPAA Plantas productoras de

biocarburantes: evolucin 1999-2003 2.4. rea de biocarburantes EN EXPLOTACIN Nmero de proyectos Energa primaria (tep) Objetivo del Plan 2010 (tep) Cumplimiento del objetivo (%) Bioetanol 2

115.700 400.000 28,93% Biodiesel 3 66.600 100.000 66,60% TOTAL 5 182.300 500.000 36,46%

Ejecucin 2003 2002 2001 EN EJECUCIN 2000 Nmero de proyectos Energa primaria (tep) Objetivo del Plan 2010 (tep) Cumplimiento del objetivo (%)

Bioetanol 1 112.200 400.000 28,05% Biodiesel 3 126.000 100.000 126,00% TOTAL 4 238.200

500.000 47,64% 1999 0 25.000 50.000 75.000 100.000 125.000 150.000 175.000 200.000 225.000 250.000 275.000 toe Comentarios Finales La biomasa es el energtico renovable ms utilizado a nivel mundial Fcil de obtener localmente y capaz de generar electricidad, calor y potencia a partir de combustibles slidos, lquidos y gaseosos que pueden sustituir los combustibles fsiles importados Es una fuente de energa neutral respecto a las emisiones de CO2 pueden ayudar a mitigar el cambio climtico ENERGAS RENOVABLES

BIOMASA INTERNATIONAL SEMINAR ON BIOENERGY AND SUSTAINABLE DEVELOPMENT FAO/UNAM/ANES/LAMNET Morelia, 2003 Bioenergy in Brazil Luiz Augusto Horta Nogueira Universidade Federal de Itajub Minas Gerais - Brazil Bioenergy in Brazil Contents Brazil: background Brazil: energy and bioenergy data Traditional and innovative uses of bioenergy

Modern bioenergy systems in Brazil Biofuels Electricity from biomass Iron production based on charcoal Institutional aspects Final comments Brazil: background

Surface: 8.54 million km2 ( 73% potentially arable) Climate: mainly tropical wet Population: 170 million inhabitants (~20% rural) Life expectancy: 68.8 years Illiteracy: 9.5% Unemployment: 7% GDP: US$504 billion 8% agriculture 35% industry 57% services Income distribution 1% goes to 50% poorest 13% goes to 1% richest Brazil: energy balance syntesis million tep 160 140 120 100 80 60 40 20 0 1985 1987 1989

Other renewable Sugar cane products Fuelwood Hydraulic Other non-renewable Natural gas Petroleum 1991 1993 1995 1997 1999 2001 100% Other renewable Sugar cane products 80%

Fuelwood 60% Hydraulic 40% Other non-renewable 20% Natural gas 0% 1985 1987 1989 1991 1993 1995 1997 1999 2001 Petroleum Source: BEN/MME, 2002 Brazil: bioenergy demand 50000 1000 tep

Ethanol 40000 Charcoal 30000 Industrial by-products 20000 Bagasse 10000 Fuelwood 0 1985 1989 1993

1997 2001 100% Biofuels are becoming modern and diversified 80% 60% Modern Biomass/Total Biomass 40% 20% Biomass share in total energy demand 0% 1985 1990

1995 2000 Source: BEN/MME, Brazil: bioenergy demand Sectorial demand 40000 1000 tep Industry Transport 30000 Agriculture 20000 Services Residential 10000 0 1985

1989 1993 1997 2001 Industrial demand 25000 1000 tep Food and beverage Pulp and paper 20000 Ferrous metals industry 15000 Ceramics 10000

Other 5000 0 1985 1989 1993 1997 2001 Source: BEN/MME, Brazil: bioenergy demand 0,10 Evolution of demand with GNP tep/1000 US$

ethanol and bagasse/GNP 0,08 0,06 0,04 0,02 0,00 1984 tep/person residential fuelwood 250 fuelwood and charcoal/GNP 1987 1990 1993 1996 1999

2002 modern biomass 200 Evolution of demand with population 150 100 50 0 1984 1987 1990 1993 1996 1999

2002 Source: BEN/MME, Brazil: energy balance trends From the past decades to the current situation, one observes that: biofuels represents about 1/3 of total energy demand in Brazil due to urbanization, fuelwood as fuel for cooking in households is losing importance modern bioenergy is increasing its role in industry and transportation, mainly from sugarcane even with the partial recovery of conventional fossil fuels in the Brazilian energy matrix, biofuels will keep a significant share Traditional and Innovative uses of Bioenergy Fuel supply Typical end users Households

Traditional Collection Innovative Planted material or agroindustrial residues Traditional industry Transportation Power generation Agroindustry Conversion technology Economic aspects Environmental

impacts Simple and inefficient No prices Can be predatory Efficient, complex and integrated Prices and costs known Potentially important, due intensity and process Although modern bioenergy tends to displace the traditional one, this trend should be supported by proper social, environmental

and technical guidelines... The two worlds of bioenergy... 4545 GJ/capita GJ/capita 4040 3535 3030 2525 developing developingcountries countries developed developedcountries countries 2020 1515 1010 55 00 1010

100 100 1,000 1,000 10,000 10,000 US$/capita US$/capita 100,000 100,000 Woodfuels demand vs. GNP per capita Source: WEIS/FAO, Modern bioenergy systems in Brazil Biofuels for automotive engines (ethanol, ethanol blends and biodiesel) Power generation using fuelwood, bagasse and other residues (IPP

and cogeneration) Iron and steel production using Alcohol from sugar cane Basic data 4,5 million ha planted for cane (0.8% of agricultural land) 55% of cane is crushed for ethanol in more than 300 mills the recent harvest of 300 million ton is producing about 13 billion liters of ethanol, 60% in So Paulo State about 610 thousand people work directly in ethanol and sugar production Alcohol from sugar cane Technical parameters Average productivity (in So Paulo)

agriculture : 70 ton/ha industry 85 liters/ton : Bagasse production (with 50% moisture, per ton of cane) total : surplus : 250 kg/ton cane up to 30% plus 140 kg as tops and leaves (barbojo)

A typical mill annually processes 1 million ton of cane and costs about US$25 million Alcohol from sugar cane Evolution Proalcool: National Alcohol Program, launched in 1975 Started with limited fleet converted motors and blends with gasoline ethanol new cars (since 1979) After some years of low performance, the interest in 700 100 of vehicles % ethanol returns 600 Sales (thousands) 80 500 400 60

300 40 200 4.3% 1.4% 100 0 20 0 1976 1980 1984 1988 1992 1996

2000 Source: ANFAVEA, Alcohol from sugar cane Brazilian automotive fuels Nowadays in Brazil, in the gas stations there are only two different fuels for Otto motors: Gasohol (sold as regular (IAD 87) and super (IAD 91)) Hydrous ethanol (94.5 %) The anydrous ethanol content in gasohol varies according to availability 25% 20% 15% 10% Ethanol content in gasohol 5%

0% 1974 1978 1982 1986 1990 1994 Source: BEN/MME, 1998 2002 Alcohol from sugar cane Energy balance in ethanol production Average Best values

Energy demand (MJ/ton canne) Agricultural activities 189.9 175.5 46.1 36.4 Ethanol produced 1996.4 2045.3 Bagasse surplus 175.1 328.5 9.2

11.2 Industrial activities Energy production (MJ/ton canne) Output/Input This agroindustry is very efficient, mainly due to the high photosynthetic efficiency of sugar cane, by-products availability and residues recycle Source: Macedo, Alcohol from sugar cane Agrochemicals demand 16 12 Canne Corn Soybean 8 4

0 herbicides (kg/ha) inseticides (0.1 kg/ha) fertilizers (100 kg NPK/ha) planted area (million ha) Production costs In mills of good performance from So Paulo State, ethanol production costs are under US$ 0,20 per liter (ex-taxes) Source: Macedo, Alcohol from sugar cane Ethanol prices 0,40

US$/l Anidrous Hydrous Brent dated 0,30 0,20 0,10 0,00 Mai/02 Set/02 Dez/02 Mar/03 80 Ethanol and oil prices at producer gate

(ex-taxes) Jun/03 (%) 70 Ethanol/gasohol prices ratio in gas stations 60 Ethanol/Gasoline 50 Jan/02 Mar/02 Mai/02 Jul/02 Set/02 Nov/02 Jan/03 Mar/03 Mai/03 Source: ANP,2003 Alcohol from sugar cane New trends - Diversification many schemes integrating energy and

food (sugar, grains and meat) have been proposed Source: Silva e Nogueira, Alcohol from sugar cane New trend Flexfuelcars Make possible the use of any blend of gasoline-ethanol in the same engine, with good performance and under the allowed emission limits 1st Brazilian flexfuel vehicle, in the market on March 2003 Source: VW Brasil, 2003 Alcohol from sugar cane Sustainability

With a good energy balance, relatively low use of chemicals, competitive prices and social acceptance, ethanol fuel production from cane is an example of a real sustainable bioenergy system. Related questions... Pre-harvest burning ban and barbojo use Mechanical harvest expansion New Biofuels in Brazil Alcohol-Diesel blends Some experiences have been carried out (buses in Curitiba) using blends of diesel with up 8% of ethanol and a co-solvent. No conclusive results yet.

Biodiesel Brazil is a large oil seeds producer (50 Mton of soybean in 2003), so there is great interest in developing methyl or ethyl esters for fossil diesel substitution. Some tests have been done and a Brazilian specification has been proposed. High costs remain a problem. Electricity from biomass Steam plants fuelled by wood were the first prime movers for power generation in Brazil, early replaced by hydro stations Nowadays, new routes to use biomass solid fuels in power generation seem to be feasible and attractive Current possibilities...

Utility generation X Self production Steam cycles X Gasified biomass cycles Single cycle X Cogeneration Planted biomass X Residues utilization Electricity from biomass In the industrial context In this situation, the biomass use for power generation is increasing in Brazil, aiming to produce electricity up to self sufficiency or with low surpluses. The cycle is selected just for power or for cogeneration. As fuel, always is burned residues (bagasse, wood industry residues, rice husks or cellulosic black liquor).

As IPP or Utility Power generation In this context bioenergy for power remains a possibility, depending basically on the availability of cheap fuels or good tariffs. Electricity from biomass Power Plants (all kinds)2% Thermal 19% Small Hydro Hydro 1% Nuclear Total installed capacity 83,420 MWe Thermal installed capacity 15,400 MWe 78%

Thermal Power Plants Source: ANEEL, 2003 Electricity from biomass Biomass Power Plants 3% Wood Residues Bagasse 30% Rice husks Black Licor 1% 66% 2,400 MW Source: ANEEL, 2003 Electricity from biomass Biomass Power Plants (examples) Sugar mills

Burning bagasse as fuel in steam cogeneration schemes, with capacities ranging from 5 to 60 MW, the power production in such plants has been improved as the steam condition increases, allowing high surplus of energy to be exported to the grid. These systems have been designed and built in Brazil, fostering the associated industry. Prof. Moreira from CENBIO estimated around 3,8 GW as the total potential to be developed in conventional cogen systems in this sector. The capacity costs vary from Electricity from biomass Biomass Power Plants (examples) Sawmills With capacities going from 1 to 30 MW, many small steam plants have been built associated to sawmills, generating power and useful waste heat. They usually operate interconnected to the grid, using their own wood residues or taking from other neighbour sawmills. Madeireira S.J. do Rio Claro 9 MW, ~ 66 GWh/year (85% sold to utility), capital cost of approx. US$ 7 million

Source: Koblitz, 2003 Electricity from biomass Biomass Power Plants (examples) Rice mills Mainly located in the South of Brazil. Some rice mills are recently using their residues (rice husks) to produce power. One example, Indstria de Alimentos Zoeli, in Uruguaiana, has 8 MW as installed capacity, exporting 6 MW to the utility. The investment was about US$ 4 million. Two Brazilian EPC companies, Koblitz and Brennand, are very active in this field, with more than 1 GW of installed/designed biomass thermal plants. Electricity from biomass New possibilities in Biomass Power Plants Reciprocating Stirling Engine Unit in test at UNIFEI (in cooperation with Technical University of Denmark), in

commissioning, to be fuelled with wood residues, Electricity from biomass New possibilities in Biomass Power Plants Integrated Biomass Gasification and Gas Turbine Experimental Unit at UNIFEI, with fluidized bed gasifier, designed for bagasse, 245 kWth, approx. 40 kWel , 75% hot efficiency Iron production based on charcoal Basic data in Brazil, since 1920 steel has been produced using charcoal 7,8 million ton of pig iron were produced in 2001 using charcoal from eucaliptus planted forests about 240 thousand people work directly in forestry and charcoal production related to metals industry

Source: Campos, Iron production based on charcoal Technical parameters Apparent density (for eucaliptus) wood in piles: 0,62 ton/stereo charcoal 0,25 ton/m3 : Charcoal from wood conversion ratio(typical) 0,50 m3 charcoal per fuelwood stereo Charcoal specific consumption in iron ore reduction 2,9 m3 charcoal per pig iron ton Source: Campos, Iron production based on charcoal

Evolution of charcoal use and production charcoal charcoal produced (1000 m3) % of charcoal produced from planted forests 32.000 80% 24.000 60% 16.000 40% 8.000 20% 0

production 0% 1991 1993 1995 1997 1999 2001 pig iron production based on charcoal (1000 ton) % of charcoal use in total pig iron production charcoal use 8.000 40% 6.000

30% 4.000 20% 2.000 10% 0 0% 1992 1994 1996 1998 2000 Source: ABRACAVE,

Iron production based on charcoal Forestry for energy In Brazil about 4.8 million ha are covered with planted trees. For energy, mainly eucaliptus is adopted The selected Eucaliptus species are Camaldulensis, Grandis, Cloesiana, Urophylla and Pellita, among other There is good expertise in forestry. Aiming to produce charcoal, about 50 thousand ha are planted every year for replacement of aged forests, in Minas Gerais State dry fuelwood productivity: typical: 9 ton/ha.year best values: 14 ton/ha.year Source: Couto, 2002 Iron production based on charcoal Impact of forestry for energy Besides the

absence of sulfur and related problems, charcoal in steel mills has an important environmental effect: per each ton of steel produced, the charcoal use sequester about 16,4 ton of CO2 , while for coke 1,65 ton of CO2 is added to atmosphere Source: Campos, Iron production based on charcoal Carbonization process Traditional kilns Modern kilns 4,4 ton wood/ton charcoal 3,6 ton wood/ton charcoal

Source: Campos, Iron production based on charcoal The dark side of charcoal production Piqui, 1984 Piqui, 2000 Although in Minas Gerais State, due to environmental restrictions, almost just planted trees are cut for charcoal production, in Northern Brazil the expansion of pig iron production has caused serious damage to the Amazonic forest Source: CNPM/EMBRAPA, Iron production based on charcoal The dark side of charcoal production Charcoal production is generally associated to very bad working conditions, children labour and

slavery. These worrying features are not intrinsic to charcoal production. In many cases they were eliminated. Institutional aspects Even without a clear definition of an institution responsible for bioenergy promotion and monitoring in Brazil, all mentioned programs have been granted a strong assistance from the Brazilian government, both through financial and tax special schemes, and R&D support. However, the lack of continuity in this assistance is a frequent complain. Examples of the government role could be given as the implementation of Proalcool and the establishment of energy forests by the FISET scheme. Institutional aspects A recent initiative in supporting bioenergy is the PROINFA - Programa de Incentivo s Fontes Alternativas de Energia Eltrica (Law 10.438, 2002), aiming to promote the construction of power plants using renewable energy, with 15 years PPAs assured for Eletrobrs.

Particularly for biomass, PROINFA proposed to add 1100 MW (7 TWh/year) until 2006 and more 6500 MW (40 TWh/year) until 2016, reaching with renewable sources about 10% of the incremental capacity. A preliminary suggestion for biomass electricity supply tariff is about 48 US$/MWh. Final comments In the Brazilian energy matrix, modern and conventional bioenergy have an important share Bioenergy played and will be playing an essential role in getting sustainability for the Energy Sector, as could be seen in the alcohol program, in several power plants fuelled by biomass and in iron production using charcoal The Government support and assistance is crucial for developing bioenergy

It is very important to consider the social impacts and environmental constraints to develop sound bioenergy systems Annex - Forestry for bioenergy and climate change Relative value of area to be annually reforested to offset 15% of expected reduction in carbon emission of Annex I countries Annex - Forestry for bioenergy and climate change Passive and active carbon fixation in forests 300 ton dry matter/ ha 250 Forest only for carbon sequestration Accumul. total, Forest for energy

200 Above ground, Forest for energy Below ground, Forest for energy 150 100 50 0 0 10 20 30 40 50 60 year 70 Annex - Forestry for bioenergy and climate change Carbon substitution effect of wood energy

600 t C/ ha/ year Carbon substitution as fuelwood 500 Carbon sequestered below ground 400 Carbon sequestered above ground 300 200 MAI: 12 ton dry matter/ ha/ year rotation: 5 years 100 0 0 10

20 30 40 50 60 70 80 year 90 Annex - Forestry for bioenergy and climate change Comparison of forestry for carbon emissions curb in power generation Carbon sequestration CO 2 coal CO2

a Coal Power Plant (1 MW) operating 30 years requires 481 ha of permanent forests to sequester CO 2 emission Fuelwood aBiom ass PowerPlant(1M W )requires507haof productionforests, whichcanoffset carbonem ission of thisplantandm oreaCoal PowerPlantwith 0.28M W , duesequestrationeffect Carbon sequestration and substitution Sources of information Main references from: Eucaliptus/woodfuel production: Couto, Larcio Charcoal production and use: Campos, Omar Power generation/gasification: Lora, Electo S. Sugarcane/alcohol: Macedo, Isaas

Institutional aspects: Poppe, Marcelo Some reference institutions: ABIOVE - Vegetable Oil Industry Association CENBIO - National Reference Center on Biomass CETEC - Technology Institute of Minas Gerais EMBRAPA - Brazilian Agricultural Research Corporation NICA - Sugar and Alcohol Industry Association UNIFEI - Federal University of Itajub

Recently Viewed Presentations

  • Unless otherwise noted, the content of this course

    Unless otherwise noted, the content of this course

    If we apply an external, oscillating force that serves to "drive" the system at some driving frequency fd, then the system is able to absorb energy via the work done by the driving force. The condition known as resonance is...
  • Linear Models - Michigan State University

    Linear Models - Michigan State University

    Logistic Regression Rong Jin Logistic Regression Model In Gaussian generative model: Generalize the ratio to a linear model Parameters: w and c Logistic Regression Model In Gaussian generative model: Generalize the ratio to a linear model Parameters: w and c...
  • George Gordon, Lord Byron

    George Gordon, Lord Byron

    Princes, the dregs of their dull race, who flow . Through public scorn,—mud from a muddy spring; Rulers who neither see nor feel nor know, But leechlike to their fainting country cling . Till they drop, blind in blood, without...
  • Chapter 6

    Chapter 6

    DETERMINING INVENTORY QUANTITIES TAKING A PHYSICAL INVENTORY TAKING A PHYSICAL INVENTORY Seller Buyer Public Carrier Co. FOB Shipping Point FOB Destination Point TERMS OF SALE Public Carrier Co. Buyer Seller Consignee Company DETERMINING OWNERSHIP OF CONSIGNED GOODS Owned by a...
  • WELCOME [carl.sandiego.edu]

    WELCOME [carl.sandiego.edu]

    course grade and petition appeals. Grade petition/appeal must be done within two days after the grade has been returned. All grade petitions/appeals can be done in person but MUST also accompanied with an email petition/appeal submission.
  • Healthy Holiday!

    Healthy Holiday!

    Try to hold for 30 seconds and repeat 2-3 times. The same thing can be performed in a doorway. The second picture is a TRX assisted lat stretch. In this picture, the stretch can be enhanced by straightening the "right"...
  • EPIC SOFTWARE FAILURES David Stotts UNC Computer Science

    EPIC SOFTWARE FAILURES David Stotts UNC Computer Science

    Morris WormNov 2, 1988. Early malware, infected 10% of the computers on the arpanet (no real internet at the time, mostly universities and govt. labs, some companies) Cleanup costs at each site ranged from $200 to $53,000 (in 1988 $$)...
  • Module 8 of the National School Mental Health Curriculum - Impact

    Module 8 of the National School Mental Health Curriculum - Impact

    Use news media outlets (write press releases for newspapers, relevant magazines, and online news sources, and/or create public service announcements on radio or local TV) as a way to disseminate information about your services, supports, and impact.