Global Impacts of Asian Pollution on Nitric Acid

Global Impacts of Asian Pollution on Nitric Acid

Global Impacts of Asian Pollution on Nitric Acid Deposition and NOx and Ozone Levels Meredith Galanter Department of Geosciences Princeton University Collaborators: Dr. Hiram (Chip) Levy II, GFDL/NOAA Bud Moxim, GFDL/NOAA Tracey Holloway, Princeton Univ.

Dr. Larry Horowitz, Princeton Univ. Dr. Mahesh Phadnis, Princeton Univ. Dr. Gregory R. Carmichael, Univ. of Iowa Outline Introduction Model Overview - Comparison with observations - NOx surface sources Present (1990) CO, NOx, O3 Levels

Future (2030) Asian Impacts - Global Tropospheric NOx and O3 - Episodic Impacts Asian Impacts on HNO3 Deposition - Global vs Asian contribution - Present Global vs Asian contribution - Future Totals for N. Pacific, N. Atlantic, and Indian Oceans Pacific Nitrogen Budget

Summary/Conclusions Why is there concern about Asian pollution? - Current rate of development = Drastic increases in emissions - Transport of trace gases and aerosols effects background chemistry of remote Pacific troposphere - Growing observational evidence of impact on N. America The above depicts how Asia is defined on the model grid.

Overview of Study - The episodic nature of air pollution transport from Asia to North America: Yienger et al., JGR, 105: 26931-26945, 2000. - Present (1990) impact on CO, NOx, and O3 - Future (~2030) impact on CO, NOx, and O3 - Track Asian pollution by source (i.e. fossil fuel burning, biomass burning, biofuels) - Analysis of regional/national emissions and their impact (e.g. India vs. China vs. rest of Asia) - Detailed analysis and comparison with observations in

Asian region - Analysis of changes in HNO3 deposition related to increases in NOx emissions from Asia GFDL Global Chemical Transport Model (GCTM) Overview - 11 sigma levels; 7 in troposphere - ~ 265 km x 265 km - 2.4ox2.4o in tropics and 3o-3.5ox2.4o in midlats

- 1 year of 6-hr time averaged GCM wind, temp., and precip. fields - no diurnal cycle - North Pacific mean circulation and storm track realistically simulated - CO and NOx run as separate simulations, output then used as input for O3 simulation GFDL Global Chemical Transport Model (GCTM) Chemistry Overview NOx

- explicit treatment of three tracers: NO x, PAN, HNO3 - first order rate coefficients calculated off-line - sources of NOx: fossil fuel combustion biomass burning soil-biogenic emissions lightning discharge aircraft emissions stratospheric injection (see Mahlman and Moxim, J. Atmos. Sci., 1978; Levy et al., JGR, 1999)

CO - CO destruction by OH acts as sink - sources of CO: fossil fuel combustion biomass burning biogenic HC oxidation methane oxidation (see Holloway et al., JGR, 2000) O3

Although both biomass burning and fossil fuel combustion are important anthropogenic emission sources, it is fossil fuel emissions which are expected to grow most rapidly in Asia, and which respond most directly to energy policy initiatives. Asia's fossil fuel emissions of NOx are predicted to quadruple between 1990 and 2030 under a no-further-control scenario based on the projections of van Aardenne et al. [Atm. Environ.,1999]. The 1990 base case fields of CO, NO x, and O3 from the GFDL GCTM are shown above for the surface and 500 mbar. Not surprisingly, the

largest concentrations (in ppbv) are seen in the largest source regions, e.g. North America, Asia, northern South America, and equatorial Africa. To determine the contribution of Asian emissions to tropospheric NOx, CO, and O3, the CO and NOx simulations are run without Asian emissions and then subtracted from full source simulations; while the O3 simulation is run without the CO and NOx emissions from Asia and then compared to the full simulations.

Both increases in NOx and CO lead indirectly to increases in O3 production in the Asian region. In the middle troposphere Asia contributes an important 10 to 25% of the total springtime O3 in 2030 throughout the Northern Hemisphere (NH). More importantly for human and agricultural health, Asia's average impact on total O3 in 2030 near the surface increases to a significant 25 to 50% (10 to 20 ppbv - see next slide) across Asia south of 30oN and into the Pacific Ocean, as well as contributing 10 to 25% of total O3 throughout the NH. Although the 1990 Asian impacts on average springtime O 3 seems fairly insignificant for North American air quality, the next series of slides will show that episodes of Asian O3 reaching the west coast of the United

States may have a more significant impact. The results of the model simulation agree very well with observations taken at CPO and Trinidad Head, CA (see next slide) [Jaffe et al., GRL, 1999; see Yienger et al., JGR, 2000 for further discussion]. Synoptic-scale episodic events are expected to increase in magnitude with the increases in energy use predicted for Asia and recent revisions to the U.S. national air quality standards for O3 (an 8-hour average of 80 ppbv not to be exceeded more than 3 times per year) may give this trans-Pacific transport of Asian emissions an important role in future U.S. air quality. The above illustrates the total O3 and Asian O3 occurring over southern California from the 2030

simulation. The dashed line in the figure marks 80 ppbv, showing that southern California would be reaching and/or breaking the new air quality standard at least 10 times just during the spring months with Asian O3 contributing importantly to 5 Focus on HNO3 Deposition - What is the present contribution of HNO3 deposition to the Pacific Ocean N budget? - What is the contribution of Asian emissions to HNO3 deposition?

- How will these contributions change with increased Asian emissions in the future? Beyond air quality, anthropogenic emissions from Asia also have the potential to significantly impact the historically clean troposphere over the Pacific leading to possible changes in background tropospheric chemistry. In addition, the large increases in NO x emissions will not only affect production of O3 but will also lead to large increases in nitric acid (HNO3) deposition in the major ocean basins, impacting the biogeochemical cycling of nitrogen in marine and coastal ecosystems.

The Pacific Ocean nitrogen budget is in balance with approximately 54 Tg N/yr input into the system from nitrogen fixation, 10 Tg N/yr input from atmospheric deposition (including reduced forms of HNO 3), and then 63 Tg N/yr output from the system by the process of denitrification and the final 1 Tg N/yr transported out of the region [Deutsch et al., GBC, 2001]. Based on this budget, atmospheric deposition of HNO 3 and its reduced species makes up 15% of the Pacific nitrogen budget at present. In the 2030 scenario of increased Asian emissions of NO x the amount of HNO3 deposition to the Pacific more than doubles, with Asia contributing 70%. Although it is uncertain how nitrogen fixation and denitrification will

change as a result of the increased nitrogen input, it is certain that this increase will affect ecosystems particularly in the North Pacific. Summary/Conclusions - Asian emissions have an important impact throughout the NH - 2030 Asian emissions will generate episodes of Asian O3 in the BL over North America: 30-40 ppbv in spring 10-20 ppbv in summer - North American air quality will become more significantly impacted by Asian emissions in the next few decades - more

impact from synoptic scale episodes than from a relatively steady increase in background O3 levels - Trans-Pacific events may well aggravate local pollution enough to violate air quality standards for O3 - Anthropogenic emissions of air pollutants have potential to significantly impact the historically clean troposphere over the Pacific Ocean alter chemistry (e.g. oxidizing capacity) change the albedo of the North Pacific Summary/Conclusions (cont.)

- Pacific Ocean (32oS - 65oN): Total HNO3 deposition is 6 Tg/yr in 1990 Asian emissions contributing 50% HNO3 depo + reduced species =15% of total inputs to Pacific N budget Total HNO3 deposition is 14 Tg/yr in 2030 Asian emissions contributing 70% - Indian Ocean (from 32oS) Total HNO3 deposition is 1.6 Tg/yr in 1990 Asian emissions contributing 45%

Total HNO3 deposition is 4.2 Tg/yr in 2030 Asian emissions contributing 75%

Recently Viewed Presentations

  • JMSB - Concordia MBA 615 Management of Information Systems ...

    JMSB - Concordia MBA 615 Management of Information Systems ...

    MIS 2000 Information Systems for Management Instructor: Bob Travica Course Summary Updated: 2018 keyboard, mouse hardware data storage; processors for transforming data running application & systems software screen, printer hardware Transformed & Organized Data Data MIS 2000 Coverage Management Information...
  • E-Commerce: Not Just Selling on the Web!

    E-Commerce: Not Just Selling on the Web!

    Title: E-Commerce: Not Just Selling on the Web! Author: Guest Last modified by: Storslee,Jon H Created Date: 6/9/1999 12:44:25 AM Document presentation format
  • (xxx) School Offer for SEND Parents/Carer's Questions and answers

    (xxx) School Offer for SEND Parents/Carer's Questions and answers

    Special Educational Needs Information Report Hampton Wick Infant and Nursery School fully recognises its responsibilities for identifying and supporting all children with special educational needs and for promoting equality of opportunity for all children in its care.
  • Evaluating Communication Costs for Distributed Sparse Tensor Factorization

    Evaluating Communication Costs for Distributed Sparse Tensor Factorization

    Extension/refactorization of existing CP-ALS algorithm. DFacTo. Utilizes one GPU on each node for sparse matrix times vector (SpMV) 1.) Background: ReFacTo Communication. Communication required after each MTTKRP. Each MPI rank assigned a contiguous slice of the tensor.
  • Reading First Action Seminar Los Angeles Unified Schools

    Reading First Action Seminar Los Angeles Unified Schools

    Reading First Action Seminar Los Angeles Unified Schools January 2005 We have evidence that … Skillful teaching creates successful students. When the school works from a shared and explicit vision of academic success, then the work of the teachers, coaches,...
  • General Mathematic (HSC) Radial Survey Stage 6 -

    General Mathematic (HSC) Radial Survey Stage 6 -

    General Mathematic (HSC) Radial Survey Stage 6 - Year 12 Press Ctrl-A ©G Dear2008 - Not to be sold/Free to use * The Radial Survey (1/3) A survey where angles and distances are measured from a point 030o 140o 245o...
  • Portfolio Committee Presentation 19 February 2018

    Portfolio Committee Presentation 19 February 2018

    Governance and Administration . The 83% implementation of the HR Plan includes but is not limited to the following activities:. Develop customised BPCMEP. Facilitate implementation of Pilot Project on Batho Pele service standards. Implementation of Gender Equity Strategic Framework and...
  • ITU-R RECOMMENDATIONS on UTC TIME SCALE

    ITU-R RECOMMENDATIONS on UTC TIME SCALE

    GPS users assume UTC(USNO) is the global reference but many use GPS Time directly The uncertainty with respect to UTC is disregarded or not-significant for most users GPS Time (GPST) is the system internal continuous timescale Primarily used for positioning...