PowerPoint - Ideal Gas Law - Pressure, Volume, Temperature

PowerPoint - Ideal Gas Law - Pressure, Volume, Temperature

The Ideal Gas Law PV = nRT Ideal Gases An ideal gas exhibits certain theoretical properties. Specifically, an ideal gas Obeys all of the gas laws under all conditions. Does not condense into a liquid when cooled. Shows perfectly straight lines when its V and T & P and T relationships are plotted on a graph. In reality, there are no gases that fit this definition perfectly. We assume that gases are ideal to

simplify our calculations. We have done calculations using several gas laws (Boyles Law, Charless Law, Combined Gas Law). There is one more to know Recall, From Boyles Law: P1V1 = P2V2 or PV = constant From combined gas law:

P1V1/T1 = P2V2/T2 or PV/T = constant P is pressure measured in kPa. V is volume measured in Liters n is moles of gas present. R is a constant that converts the units. It's value is 8.314 kPaL/molK T is temperature measured in Kelvin. Simple algebra can be used to solve for any of these values. P = nRT V = nRT n = PV

T = PV R = PV V P RT nR nT Developing the ideal gas law equation PV/T = constant. What is the constant? At STP: T= 273K, P= 101.3 kPa, V= 22.4 L/mol Because V depends on mol, PV = constant we can change equation to: T mol

Mol is represented by n, PV = R constant by R: Tn Rearranging, we get: PV = nRT At STP: (101.3 kPa)(22.4 L) = (1 mol)(R)(273K) R = 8.31 kPa L K mol Note: always use kPa, L, K, and mol in ideal gas law

questions (so units cancel) The Ideal Gas Law PV = nRT P = Pressure (in kPa) V = Volume (in L) T = Temperature (in K) n = moles R = 8.31 kPa L K mol R is constant. If we are given three of P, V, n, or T, we can solve for the unknown value. 1 mol of gas at STP = 22.4 L

1 mol of gas at SATP = 24.8 L STP : 0oC, 101.3 kPa SATP : 25oC, 100kPa Sample problems How many moles of H2 is in a 3.1 L sample of H2 measured at 300 kPa and 20C? PV = nRT P = 300 kPa, V = 3.1 L, T = 293 K n = PV/RT (300 kPa)(3.1 L) = n = 0.38 mol (8.31 kPaL/Kmol)(293 K)

How many grams of O2 are in a 315 mL container that has a pressure of 12 atm at 25C? PV = nRT P= 1215.9 kPa, V= 0.315 L, T= 298 K (1215.9 kPa)(0.315 L) = n = 0.1547 mol (8.31 kPaL/Kmol)(298 K) 0.1547 mol x 32 g/mol = 4.95 g Ideal Gas Law Questions 1. How many moles of CO2(g) is in a 5.6 L sample of CO2 measured at STP? 2. a) Calculate the volume of 4.50 mol of SO2(g) measured at STP. b) What volume would this

occupy at 25C and 150 kPa? (solve this 2 ways) 3. How many grams of Cl2(g) can be stored in a 10.0 L container at 1000 kPa and 30C? 4. At 150C and 100 kPa, 1.00 L of a compound has a mass of 2.506 g. Calculate its molar mass. 5. 98 mL of an unknown gas weighs 0.087 g at SATP. Calculate the molar mass of the gas. Can you determine the identity of this unknown gas? 1. Moles of CO2 is in a 5.6 L at STP? P=101.325 kPa, V=5.6 L, T=273 K PV = nRT (101.3 kPa)(5.6 L) = n (8.31 kPaL/Kmol)(273 K) (101.325 kPa)(5.6 L)

(8.31 kPaL/Kmol)(273 K) = n = 0.25 mol 2. a) Volume of 4.50 mol of SO2 at STP. P= 101.3 kPa, n= 4.50 mol, T= 273 K PV=nRT (101.3 kPa)(V)=(4.5 mol)(8.31 kPaL/Kmol)(273 K) (4.50 mol)(8.31 kPaL/Kmol)(273 K) V= = 100.8 L (101.3 kPa) 2. b) Volume at 25C and 150 kPa (two ways)?

Given: P = 150 kPa, n = 4.50 mol, T = 298 K (4.50 mol)(8.31 kPaL/Kmol)(298 K) V= = 74.3 L (150 kPa) From a): P = 101.3 kPa, V = 100.8 L, T = 273 K Now P = 150 kPa, V = ?, T = 298 K P1V1 P2V2 = T1 T2 (101.3 kPa)(100 L)

(150 kPa)(V2) = (273 K) (298 K) (101.3 kPa)(100.8 L)(298 K) = 74.3 L (V2) = (273 K)(150 kPa) 3. How many grams of Cl2(g) can be stored in a 10.0 L container at 1000 kPa and 30C? PV = nRT P= 1000 kPa, V= 10.0 L, T= 303 K (1000 kPa)(10.0 L) = n = 3.97 mol

(8.31 kPaL/Kmol)(303 K) 3.97 mol x 70.9 g/mol = 282 g 4. At 150C and 100 kPa, 1.00 L of a compound has a mass of 2.506 g. Calculate molar mass. PV = nRT P= 100 kPa, V= 1.00 L, T= 423 K (100 kPa)(1.00 L) = n = 0.02845 mol (8.31 kPaL/Kmol)(423 K) g/mol = 2.506 g / 0.02845 mol = 88.1 g/mol 5. 98 mL of an unknown gas weighs 0.081 g at SATP. Calculate the molar mass.

PV = nRT P= 100 kPa, V= 0.098 L, T= 298 K (100 kPa)(0.098 L) = n = 0.00396 mol (8.31 kPaL/Kmol)(298 K) g/mol = 0.081 g / 0.00396 mol = 20.47 g/mol Its probably neon (neon has a molar mass of 20.18 g/mol) Determining the molar mass of butane Using a butane lighter, balance, and graduated cylinder determine the molar mass of butane. Determine the mass of butane used by

weighing the lighter before and after use. The biggest source of error is the mass of H2O remaining on the lighter. As a precaution, dunk the lighter & dry well before measuring initial mass. After use, dry well before taking final mass. (Be careful not to lose mass when drying). When you collect the gas, ensure no gas escapes & that the volume is 90 100 mL. Place used butane directly into fume hood. Submit values for mass, volume, & g/mol. Molar Mass of Butane: Data & Calculations Atmospheric pressure:

Temperature: For more lessons, visit www.chalkbored.com

Recently Viewed Presentations

  • Introduction to Plant Life - Michigan State University

    Introduction to Plant Life - Michigan State University

    Introduction to Plant Life With this slide show you will: Learn what the parts of the plant look like and what their function is. That means you'll learn how each part helps the plant survive. Let's start with how a...
  • Hebrew Stress Back to the Future - School of English and ...

    Hebrew Stress Back to the Future - School of English and ...

    Since = µ, feet are inevitably syllabic, regardless of this ranking. No moraic codas and in the absence of vowel length contrast the mora does not play a role.
  • Review of Community Care Facilities Ordinance (CCFO) And

    Review of Community Care Facilities Ordinance (CCFO) And

    HOMELESS SERVICES, PUBLIC HOUSING. Turning the tide. LARGE, BROAD-BASED CIVIC GROUPS. Do problem properties, landlords exist? Absolutely—past, present and future. Vulnerable populations are prone to exploitation. ... PowerPoint Presentation Last modified by:
  • Parallel DB 101 - Mass Data Training Group

    Parallel DB 101 - Mass Data Training Group

    Moore's Law. $100/TB storage, $1000 servers, commodity networking. Increasing volumes of "dark" data. Data collected but never analyzed. Widening analysis gap of "traditional" solutions
  • Beginning of the Roman Empire

    Beginning of the Roman Empire

    Jealousy and ambitions lead to Marc Anthony's defeat, and ultimately his death! ... Married to Julius Caesar and Marc Anthony. Ruled for over 20 years . Delayed the Roman takeover of Egypt. ... Beginning of the Roman Empire
  • Social Security: With You Through Lifes Journey SocialSecurity.gov

    Social Security: With You Through Lifes Journey SocialSecurity.gov

    In 2019, you must earn $1,360 in covered earnings to get one Social Security or Medicare work credit and $5,440 to get the maximum four credits for the year. When you work and pay Social Security taxes, you earn up...
  • The Reign of Louis XIV

    The Reign of Louis XIV

    It resulted from those who were horrified by groups that claimed to be the only ones with a correct set of doctrines. Montaigne and Descartes Montaigne explores ideas about life's meaning in essays. Descartes uses observation and reason to create...
  • Chapter 1 The Nature of Strategic Management

    Chapter 1 The Nature of Strategic Management

    Arial Garamond Wingdings Times New Roman Verdana Edge 1_Pearson_orange 1_Edge Pearson_orange Pearson_Presentation Pearson_Divider Pearson_Key Point Pearson_Thank you 2_Edge 1_Pearson_Presentation 1_Pearson_Divider 1_Pearson_Key Point 1_Pearson_Thank you 3_Edge 2_Pearson_orange 3_Pearson_orange 4_Pearson_orange 5_Pearson_orange 4_Edge 6_Pearson ...