Statistical inference on Mobile Phone data Martijn Tennekes

Statistical inference on Mobile Phone data Martijn Tennekes

Statistical inference on Mobile Phone data Martijn Tennekes THE CONTRACTOR IS ACTING UNDER A FRAMEWORK CONTRACT CONCLUDED WITH THE COMMISSION Eurostat Outline Statistical inference Methodological challenges Estimation of the Day Time Population (DTP) Literature 2 Eurostat Eurostat

Statistical inference What kind of statistics can be produced from mobile phone data? 1. Day Time Population: the number of people in a certain region at a certain time. Useful for visitor counts during events, infrastructure planning, emergency management. 2. Tourism statistics: what places do they visit, where do they overnight, where do they come from? 3. Commuting patterns: where do people live and work? How and when do they commute? 4. Urban planning / smart city: what trips do people make in urban areas? By what mode of transport? 5. Social networking: who is connected to whom? 6. Natural disasters: what are the migration flows over time? See literature on last slides for examples of each of them. Eurostat Eurostat 3 Data source: which one to choose? The vast majority of state-of-the art research on statistical inference of mobile phone data (see references on last slides) uses CDR. The reasons are the following: The CDR files are logged by mobile phone operators. Therefore there are

no additional costs for collecting this data. Exact geographic location is included in the latest development (instead of cell/site ID). Modern smartphones (4G) create many (100+) events, even though they are not actively used. Using other sensors, such as GPS, has the following consequences: Consent of the owner is required. A special app needs to be installed and kept running. The app and the sensors (especially GPS) will drain the battery faster. 4 Eurostat Eurostat CDR and privacy CDR contains sensitive private information, even though it does not contain content of calls, text messages, and data. Three methods are often used to cope with this: 1. IMSI numbers are encrypted. 2. Encrypted IMSI numbers are renewed periodically. In the Netherlands: Dutch subscribers every month and foreign subscribers every day.

3. CDR data is aggregated (further discussed later on). 5 Eurostat Eurostat Possible data processing setup for NSIs Queries Secure CDR Tables CDR Data Algorithms Methods CDR Aggregates Mobile Phone Operator Secured CDR

Aggregates Intermediate party (optional) Estimations National Statistical Institute 6 Eurostat Eurostat Methodological challenges when using mobile phone network data How to determine the exact location of the events, given site and cell IDs? How to link events to people? This is not evident, since there are no demographic variables in the CDR.

How to make estimations for a whole population, including people who do not use a mobile phone, and people from other operators? How to cope with people who have more than one device (e.g. private and business)? 7 Eurostat Eurostat Voronoi location algorithm Given the site and cell ID, what is the location of an event? The most popular method is the Voronoi algorithm: Assign each point in an area to its closest antenna The area is now split into regions, which are proxies for the cells. Each event is allocated to the region of the corresponding antenna.

8 Eurostat Eurostat Voronoi location algorithm (2) How to translate the Voronoi regions to administrative regions, such as municipalities or neighborhoods? Voronoi regions can be converted directly to administrative regions using polygon intersections. However, due to computational complexity, a spatial grid is commonly used as intermediate step: Create a grid on top of the area, with grid cells of, say, 500 by 500 meters. Divide the number of events per Voronoi region equally over its grid cells. Aggregate the number of events per grid cell to the corresponding administrative region. 9 Eurostat Eurostat Voronoi location algorithm (3) Voronoi tesselation of the area

of Eindhoven from 2010 test data (Jonge et al, 2012). Dots are antennae Black borders indicate Voronoi regions White borders indicate municipalities 10 Eurostat Eurostat Voronoi location algorithm (4) Downsides of the Voronoi algorithm: In practice, antennas are often directional where the cell are pie shaped. A device is not always connected to the closest antenna.

Antennas can have different ranges (from 200 meters to 40 kilometers). 11 Eurostat Eurostat Bayesian location algorithm Input: cell plan, with for each cell (antenna) either polygon that described the covered area, or the range and angle of the antenna, which can be used to create a pie shaped polygon. Algorithm: Place a grid (with 500 by 500 meter cells) over the polygon areas Eurostat Eurostat 12 Bayesian location algorithm (2)

Apply the following formula, which is based on Bayes rule: The i index represents a grid-cell, and the j an antenna polygon. The prior, , is fixed to 1. The likelihood, , is: 0 if grid cell i is not in polygon j; 1/f(i) otherwise, where f(i) is the number of polygons in which i is located. Enhancement: this value can be multiplied by 1/d(j, i)2 , which is a factor that takes into account the distance to the antennae, where d(j,i) is the distance from i to the antenna of polygon j. The values of the right-hand side are normalized to 1. 13 Eurostat

Eurostat Bayesian location algorithm example 1 Suppose an event is logged at the blue antenna. The he number of grid cells for areas 1 to 4 are approximately 10, 22, 3, 5 respectively. Normalization factor is 10*1 + 22* + 3* + 5*1/3 =241/6 2 4 3 Probability that the location is in a grid cell of area 1. 1 / 241/6 =6/145 2. / 241/6 =3/145 3. / 241/6 =3/145

4. /3 / 241/6 =2/145 1 14 Eurostat Eurostat Units: devices and people Units that are measures are mobile devices, while units of interest are persons. Easy assumption to start with: each mobile phone belongs to one person, and each person has exactly one mobile phone. However, in reality this is not true: some people have multiple phones and some people do not have a mobile phone.

15 Eurostat Eurostat Demographic background data CDR data does not contain demographic variables, such as age, gender, and residential address. Generally, there are two solutions: 1. 2. Using customer data from the mobile phone operator Extract features using simple rules or machine learning techniques 16 Eurostat Eurostat Customer data

Mobile phone operators maintain customer data, including age, gender, and residential address. This data can be joined with CDR data, but operators may be restrained to do this, due to legal issues. Moreover, these data are not always available for business and pre-paid customers. For business customers, the address is often the work address. 17 Eurostat Eurostat Feature extraction

It is possible to extract features, such as place of residence and place of work. Example of simple approach to extract the place of residence: for each device, the most frequent location during weekday nights between 19:00 and 08:00 and during weekend days is labeled as home. This definition is used by Jiang (2016). Extracting place of work can be done in a similar way, although not everyone has an 9-17 office job. Other places of interest, such as regular visited social places or shopping locations can be extracted by using statistical and machine learning techniques. See for instance Widhalm (2015) and Jiang (2016). Extracting age and gender is very hard by CDR data alone. Machine learning techniques (supervised) could be used for that. Joined demographic data from a sample of people can be used as training and test sets. No studies have been found yet on this 18 subject. Eurostat Eurostat How to make estimations for a whole population?

For demographic variables in CDR data (either joined or extracted), standard weighting/calibration methods from sampling theory can be used. For important demographic variables that are not contained in CDR data, weighting could be done at aggregated level with auxiliary information, such as general mobile phone usage by age figures. An easy starter is the place of residence. This variable can be easily extracted from CDR data. Next, it can be used to weight CDR numbers to the totals from population registers. Other demographic variable could further refine the weighting. Data from foreigners (roaming data) is harder, since the place of residence cannot be easily determined, and weighting factors are difficult to determine. 19

Eurostat Eurostat Day Time Population (Dutch approach) At Statistics Netherlands, a method is in development to estimate the Day Time Population (Tennekes and Offermans, 2014) Pilot study with Vodafone, with a market share of 1/3 Processing of CDR data has been done by Mezuro, an intermediate company (see slide 6); aggregates were delivered to SN. 20 Eurostat Eurostat Mobile phone population Mobile phone population has been extracted from Customer Data MPRD (Municipal Personal Records Database) = Dutch population Eurostat

Eurostat 21 Subpopulations model Mobile phone metadata weighted to the MPRD. MPRD data only. MPRD data & Education Registers. 22 Eurostat Eurostat DTP weighting method in a nutshell CDR data from Dutch Vodafone devices Weighting to Dutch population

minus Dutch people abroad (from other sources) Day Time Population Population and education registers Estimating without CDR data CDR roaming data Weight to total number of foreigners in the Netherlands (from other sourcers) 23 Eurostat Eurostat Mobile phone metadata Aggregated CDR data: number of unique devices X time period X current region X residential region. Heatmap of total unique devices for May 2013. Rows are days,

columns are hours. Eurostat Eurostat 24 Weighting method Example: suppose there are only 3 regions in the Netherlands: Amsterdam, Boskoop and Castricum Residence Amsterdam Current region at time t Amsterdam Boskoop Castricum 199,000 1,000

4,000 Boskoop 500 3,500 0 Castricum 500 500 16,000 25 Eurostat Eurostat Weighting method (2)

Example: suppose there are only 3 regions in the Netherlands: Amsterdam, Boskoop and Castricum Residence Amsterdam Current region at time t Amsterdam Boskoop Castricum 199,000 1,000 4,000 Boskoop 500

3,500 0 Castricum 500 500 16,000 600,000 15,000 30,000 MPRD total 26 Eurostat Eurostat

Weighting method (3) Example: suppose there are only 3 regions in the Netherlands: Amsterdam, Boskoop and Castricum Residence Amsterdam Current region at time t Amsterdam Boskoop Castricum 596,000 3,000 6,000 Boskoop 2000

10,500 0 Castricum 2000 1,500 24,000 600,000 15,000 30,000 MPRD total 27 Eurostat Eurostat

Weighting method (4) Example: suppose there are only 3 regions in the Netherlands: Amsterdam, Boskoop and Castricum Residence Amsterdam Current region at time t Amsterdam Boskoop Castricum DTP total 596,000 3,000 6,000

605,000 Boskoop 2000 10,500 0 12,500 Castricum 2000 1,500 24,000 27,500 600,000

15,000 30,000 MPRD total 28 Eurostat Eurostat Daytime population in Dutch municipalities Dutch population totals 29 Eurostat Eurostat Day time population during weekdays DTP compared to population register

during two regular weekdays. Red areas: mainly cities were people work Blue areas: mainly commuting towns 30 Eurostat Eurostat Day time population during weekdays City of Eindhoven and surrounding towns 31 Eurostat Eurostat Day time population region profiling City Centre Working region (busy) Working region (normal)

No classification Commuting region Recreational region K-means clustering Work = daytime vs. night-time during working weeks Weekend = weekends activity Holiday = May holiday activity 32 32 Eurostat Eurostat 33 DTP during one week per municipality Eurostat Eurostat Further Research

Test main assumption 1 device = 1 person Improve estimations of foreigners How many people have two or more devices? How many people do not have a mobile phone? How many tourists use a mobile phone? Weighting difficult, since totals are unknown Auxiliary information about the motive could help, i.e. why are foreigners in the Netherlands? Working across the border? Studying? A one day trip? Holiday? Validate DTP estimations

Possible sources: official visitor counts of large events (such as football matches) 34 Eurostat Eurostat Literature Alexander, L., Jiang, S., Murga, M., and Gonzalez, M.C. (2015) Origin-destination trips by purpose and time of day inferred from mobile phone data, Transportation Research C: Emerging

Technologies, 58 (2015) 240250. (3,4,U) Deville, P., Linard, C., Martin, S., Gilbert, M., Stevens, F.R., Gaughan, A.E. (2014) Dynamic population mapping using mobile phone data, Proceedings of the National Academy of Sciences 111 (45), 15888-15893 (1,C) Diao, M., Zhu, Y., Ferreira Jr, J., Ratti, C. (2015) . Inferring individual daily activities from mobile phone traces: A Boston example Environment and Planning B: Planning and Design, 1-10. (3,4,U) Finger, F., Genolet, T., Mari, L., Magny, G. C. de, Manga, N. M. (2016) Mobile phone data highlights the role of mass gatherings in the spreading of cholera outbreaks, Proceedings of the National Academy of Sciences of the United States of America. Vol. 113, No. 23, pp. 64216426 (6,C) Iqbal, M.S., Choudhury, C.F., Wang, P. and Gonzlez, M.C. (2014) Development of origin-destination matrices using mobile phone call data. Transportation Research Part C: Emerging Technologies, 40. pp. 63-74. (3,4,U) Jiang, S., Yang, Y., Gupta, S., Veneziano, D., Athavale, S., Gonzalez, M.C. (2016) TimeGeo: a spatiotemporal framework for modeling urban mobility without surveys, PNAS 2016 113 (37) (3,4,U) Jonge, E. de, Pelt, M. van, Roos, M. (2012) Time patterns, geospatial clustering and mobility statistics based on mobile phone network data. Discussion Paper. Statistics Netherlands (3,C) Red code: 1 Day Time Population, 2 Tourism, 3 Commuting Patterns, 4 Urban/Smart City, 5 Social Networking, 6 Natural Disasters, C Country Level, U Urban Area (see slide 16) Eurostat Eurostat 35

Literature Lu, X., Wrathall, D.J., Sundsy, R.D., Nadiruzzaman, Md., Wetter, E., Iqbal, A., Qureshi, T., Tatem, A., Canright, G., Eng-Monsen, K., Bengtsson, L. (2016) Unveiling hidden migration and mobility patterns in climate stressed regions: A longitudinal study of six million anonymous mobile phone users in Bangladesh, Global Environmental Change 38:1-7 (6,C) Meersman, F. de, Seynaeve, G., Debusschere, M., Lusyne, P., Dewitte, P., Baeyens, Y., Wirthmann, A. Demunter, C., Reis, F., Reuter, H. I. (2016) Assessing the Quality of Mobile Phone Data as a Source of Statistics, Paper for the European Conference on Quality in Official Statistics (Q2016). (1,C) Offermans, M., Tennekes, M. (2014) Mobile Phone Metadata: A New Source for Official Statistics. Presentation for the 2014 Joint Statistical Meeting (JSM), Boston, USA. (1,2,C) Pucci, P., Manfredini, F., Tagliolato, P. (2015) Mapping Urban Practices Through Mobile Phone Data, Springer. (3,4,U)

Tennekes, M., Offermans, M. (2014) Daytime Population Estimations Based on Mobile Phone Metadata. Presentation for the 2014 Joint Statistical Meeting (JSM), Boston, USA. (1,C) Toomet, O., Silm, S., Saluveer, E., Ahas, R., Tammaru, T. (2016) Where do Ethno-Linguistic groups meet? How copresence during free-time is related to copresence at home and at work, PLOS ONE, 2015-05-01 (5,U) Widhalm, P., Yang, Y., Ulm, M., Athavale, S. and Gonzalez, M.C. (2015), Discovering urban activity patterns in cell phone data, Transportation, Volume 42, Issue 4, pp 597-623 (3,4,U) Red code: 1 Day Time Population, 2 Tourism, 3 Commuting Patterns, 4 Urban/Smart City, 5 Social Networking, 6 Natural Disasters, C Country Level, U Urban Area (see slide 16) 36 Eurostat Eurostat

Recently Viewed Presentations

  • Using Ryan White HIV/AIDS Program RSR Data to Monitor ...

    Using Ryan White HIV/AIDS Program RSR Data to Monitor ...

    CD4 declines, viral load increases at reincarceration and return to care1,2. Texas experience: 5.4% of prison inmates receiving ART while incarcerated fill ARV prescription in time to avoid gap in treatment3. Springer SA, Pesanti E, Hodges J, Macura T, Doros...
  • Kristen Matha and Leeland Zeller NCAA 2015 Regional

    Kristen Matha and Leeland Zeller NCAA 2015 Regional

    Your head women's lacrosse coach wants to work at a noninstitutional camp and film the participation of two recruits. Is this permissible? Analysis: No, coaches may not be involved in recruiting while employed at noninstitutional camp/clinic. May record if not...
  • Scientific Computing - Technische Universität München

    Scientific Computing - Technische Universität München

    Scientific Computing (a tutorial) ... forms a fundamental system is that the Wronskian of these solutions is not zero There is an infinite number of possible fundamental sets of solutions If the Wronskian of n solutions vanishes at any point...
  • Welcome to Seycove Course Programming For parents of

    Welcome to Seycove Course Programming For parents of

    Your final grade 11 marks may be: Used for early admission (Ontario and U Vic) UBC indicating they may use for entrance Used early in gr. 12 for scholarship consideration official Ministry record of marks used for entrance in post...
  • NGB Vision/Mission and Strategic Imperatives

    NGB Vision/Mission and Strategic Imperatives

    RMS Training SFC Roach UNCLASSIFIED // FOUO * Retention Counseling Work Buckets Load a Counseling Add Comments Record Intent Complete DA 4836 in RMS Upload DA 4836 and Bonus Amendment Create ETS Intent Report Retention Counseling Work Buckets Retention Load...
  • Vocabulary Practice My neighbors are _______ of a

    Vocabulary Practice My neighbors are _______ of a

    glistening - adjective - shining or sparkling with reflected light habitat fragile threatened coaxing The dark storm clouds made the baseball players feel _____ with a rain-out. threatened - adjective - having a sense of harm or danger coaxing threatened...
  • Police Professionalism, Education and Learning

    Police Professionalism, Education and Learning

    Agenda. Professor Nick Fyfe, Director, Scottish institute of Policing Research. Dr . Steve Tong, Canterbury Christ Church University: Police education in England and Wales: a changing landscape. Professor . Sofie
  • Help! I can't go and my chest is burning: Constipation and ...

    Help! I can't go and my chest is burning: Constipation and ...

    Help! I Can't Go and My Chest is Burning:Constipation and GERD Common Solutions to Common Problems. Teresa Lowery, MD, MPH, FAAFP, ABFM. Regional 2/3 Health Specialist