Semisolid dosage form Murat Kizaibek Ointments Ophthalmic ointments

Semisolid dosage form Murat Kizaibek Ointments Ophthalmic ointments

Semisolid dosage form Murat Kizaibek Ointments Ophthalmic ointments Suppository ointments

Concept Ointment base Adjuvants Preparation of ointments Quality control of ointments Concept Definition: semisolid preparations intended for exter nal application are termed ointments.

Ingredient: drug substance +bases+ adjuvants Classification According to the dispersion system: (1) solutions type (2) suspension type (3) emulsions type

(1) oleaginous dosage form (2) emulsions dosage form According to the bases: (3) pastes dosage form (4) collodions dosage form (5) ophthalmic dosage form

Quality requirement the product is required smooth and uniform with certain stickiness to skin the drug in bases even distributed stability of the ointment Skin infection preparations are designed to be sterile Ointment bases Ointment bases are classified into four general groups:

(1) Hydrocarbon bases (2) Absorption bases (3) Water-Removable Bases (4) Water-Soluble Bases (1) hydrocarbon bases Hydrocarbon bases (oleaginous bases) are water-free, and a queous preparations may be incorporated into them only in s mall amounts and then with difficulty.

Hydrocarbon bases are retained on the skin for prolonged pe riods, do not permit the escape of moisture from the skin to t he atmosphere, and are difficult to wash off. As such they act as occlusive dressings. They do not "dry ou t" or change noticeably upon aging. Petrolatum a mixture of semisolid hydrocarbo ns obtained from petroleum

an unctuous mass, varying in color from yellow to white It may be used alone or in combina tion with other agents as an ointme nt base Commercial product is Vaseline Paraffin A purified mixture of solid hydrocarbons obtained from petroleum.

A colorless or white, more or less translucent mass that may be used to harden or stiffen oleaginous semisolid ointment bases. Liquid paraffin a colorless, odorless oily liquid consisting of a mixture of hydrocarbons obtained from petroleum

has the same character with paraffin be used in combinatio n with paraffin to adju st viscosity Hydrophilic Petrolatum is composed of cholesterol, stearyl alcohol, white wax, and white petrolatum

has the ability to absorb water, with the formation of a water-in-o il emulsion. Aquaphor is a highly refined variation of Hydrophilic Petrolatum and because it can absorb up to 3 times its weight in water, it has proven useful to incorporate extemporaneously a water-soluble d rug into an oleaginous base. Anhydrous Lanolin (refined wool fat) may contain no more than 0.25

% of water. insoluble in water, but mixes wi thout separation with about twi ce its weight of water The incorporation of water resu lts in the formation of a water-i n-oil emulsion. Lanolin (hydrous Wool Fat )

a semisolid, fatlike substance obtained from the wool of she ep. a water-in-oil emulsion that c ontains between 25 and 30% water. Additional water may be inco rporated into lanolin by mixi ng.

Beeswax and spermaceti They are weak sufactants (W/O) and used as stabilizati on agents in O/W emulsive ointment. Mineral Oil a mixture of liquid hydrocarbons. It is useful as a levigating substan ce to wet and to incorporate solid

substances into the preparation o f ointments that consist of oleagin ous bases as their vehicle. (2) Absorption bases Absorption bases may be of two types: (1)those that permit the incorporation of aqueous solut ions, resulting in the formation of water-in-oil emuls ions (e.g. Hydrophilic Petrolatum and Anhydrous lan

olin) and those that are already water-in-oil emulsio ns (emulsion bases) that permit the incorporation of small, additional quantities of aqueous solutions (e.g. lanolin and Cold Cream). These bases are useful as emollients although they do not provide the degree of occlusion afforded by the ol eaginous bases. Absorption bases are not easily removed from the ski

n with water washing. They are also useful pharmaceutically to incorporate aqueous solutions of drugs, e g., sodium sulfacetamid e, into oleaginous bases. (3)Water-Removable Bases oil-in-water emulsions that are capable of being washe d from skin or clothing with water. For this reason, th ey are frequently referred to as "water-washable" oin

tment bases may be diluted with water or with aqueous solutions. have the ability to absorb serous discharges in dermat ologic conditions. Certain medicinal agents may be better absorbed by t he skin when present in a base of this type than in oth er types of bases. Emulsifying agents

sodium lauryl sulfate :O/W emulsion stearyl alcohol and cetyl alcohol representing the ole aginous phase of the W/O emulsion to improve the st abilization and viscosity. sodium stearate and calcium stearate. Glyceryl monostearate: weak W/O emulsifying agent s and used as stabilization agents and emollient in th e O/W emulsion.

Spans: W/O emulsifying agents Tweens: O /W emulsifying agents Peregal O and emulsive OP: O/W Stearic acid, beewax and paraffin are the main oleaginou s bases. propylene glycol and water representing the aqueous ph ase Methylparaben and propylparaben are used to preserve t

he ointment against microbial growth (4) Water-Soluble Bases contain only water-soluble components. are water washable Because they soften greatly with the addition of water, aqueous solutions are not effectively incorporated into these bases. Rather, they are better used for the incor poration of nonaqueous or solid substances.

Polyethylene Glycol Ointment Polyethylene glycols are polymers of ethylene oxide and water The chain length may be varied to achieve polymers having desired viscosity and physical (liquid, semisolid, or solid) form. The general formula for this base calls for the combining of polyethylene glycol 3350(a solid) and

polyethylene glycol 400 (a liquid) to prepare base. Adjuvants Antioxidants Antimicrobial preservatives Antioxidants preparations

aqueous Antioxidants Sodium sulfite(Na2SO3) sodium bisulfite(NaHSO3), hypoph osphorous acid(H3PO2) ascobic acid( vitamin C) oleaginous

Alpha tocopherol(vitamin E) Butylhydroxyanisole(BHA) ascorbyl palmitate Antimicrobial preservatives frequently require the addition of chemical antimicr obial preservatives to the formulation to inhibit the growth of contaminating microorganisms

These preservatives include: para-hydroxybenzoates (parabens), phenols, benzoic acid, sorbic acid, quater nary ammonium salts and other compounds. Selection of the Appropriate Base The selection of the base to use in the formulation of an ointment depends upon the careful assessment of a number of factors, including : (a) the desired release rate of the particular drug subst

ance from the ointment base (b) the desirability for enhancement by the base of the percutaneous absorption of the drug (c) the advisability of occlusion of moisture from the skin by the base (d) the short-term and long-term stability of the drug in the ointment base (e) the influence, if any, of the drug on the consistency or

other features of the ointment base. (f) patient factors also play an important role in a base's selection Preparation of Ointments Both on a large and a small scale, ointments are prepared by three general methods: (1) incorporation method (2) fusion method

(3) emulsification method The method for a particular preparation depends primarily upon the nature of the ingredients (1) incorporation the components of the ointment are mixed together by various means until a uniform preparation has been attained. On a small scale, the pharmacist may mix the

components of an ointment in a mortar with a pestle, or a spatula and an ointment slab (a large glass or porcelain plate) may be used to rub the ingredients together. (2) fusion By the fusion method, all or some of the components of an ointment are combined by being melted together and cooled with constant stirring until congealed.

Those components not melted are generally added to the congealing mixture as it is being cooled and stirred. Naturally, heat-labile substances and any volatile components are added last when the temperature of the mixture is low enough not to cause decomposition of volatilization of the components. (3) emulsification In the preparation of ointments having an emulsion type of

formula, the general method of manufacture involves a melting process as well as an emulsification process. the water-immiscible components such as the oil and waxes are melted together in a steam bath to about 70 to 75C Meantime, an aqueous solution of all of the heat-stable, water-soluble components is being prepared in the amount of purified water specified in the formula and

heated to the same temperature as the oleaginous components. Then the aqueous solution is slowly added, with constant stirring (usually with a mechanical stirrer), to the melted oleaginous mixture, the temperature is maintained for 5 to 10 minutes to prevent crystallization of waxes the mixture is slowly cooled with the stirring

continued until the mixture is congealed. Notice: If the aqueous solution were not the same temperature as the oleaginous melt, there would be solidification of some of the waxes upon the addition of the colder aqueous solution to the melted mixture.

Emulsification ointments ophthalmic ointments Concept semisolid preparations intended for application to the eye are specially prepared and are termed ophthalmic ointments.

Preparation of ophthalmic ointments The methods of preparation just like ointments,but under the aseptic condition for prevent eye infection. The bases must be non-irritating to the eye and must permit the diffusion of the medicinal substance throughout the secretions bathing the e

ye. Ointment bases utilized for ophthalmics have a melting or softeni ng point close to body temperature. In most instances, mixtures of petrolatum and liquid petrolatum (mineral oil) are utilized as the ointment base. Sometimes a water-miscible agent as lanolin is added. This per mits water and water-insoluble drugs to be retained within the del ivery system.

The advantage and disadvantage The primary advantage of an ophthalmic ointment over an ophthalmic solution is the increased ocular contact time of the drug. One disadvantage to ophthalmic ointment use is the blurred vision which occurs as the ointment base melts and is spread across the lens. Suppositories

1.Definition Suppositories are semisolid dosage forms intended for insertion into body orifices where they melt, soften, or dissolve and exert localized or systemic effects. 2. Body orifices for using Suppositories are commonly employed rectally, vagi nally and occasionally urethrally.

They have various shapes and weights depending up on the density of the base and the medicaments prese nt in it, and the individual manufacturer's product. Rectal using Vaginal using

Shape of suppositories 3.character of action 1)Local Action Rectal suppositories are most frequently employed to relieve constipation or the pain, irritation, itching, and inflammation a ssociated with hemorrhoids or other anorectal conditions. Vaginal suppositories or inserts are employed mainly as cont raceptives, antiseptics in feminine hygiene, and as specific a

gents to combat an invading pathogen. Urethral suppositories may be used as antibacterial and as a local anesthetic preparative to urethral examination. 2)Systemic Action administered rectally in the form of suppositories for systemic effects include: (a) for the relief of nausea and vomiting and as a tranquilizer (b) for narcotic analgesia

(c) for the relief of migraine syndrome (d) anti-inflammatory analgesic and antipyretic. 3) advantages over oral therapy (rectal route for achieving systemic effects ) (a) drugs destroyed or inactivated by the pH or enzymatic activity of the stomach or intestines need not be exposed to these destructive environments; (b) drugs irritating to the stomach may be given without

causing such irritation; (c) drugs destroyed by portal circulation may bypass the liver after rectal absorption (drugs enter the portal circulation after oral administration and absorption); (d) the route is convenient for administration of drugs to adult or pediatric patients who may be unable or unwilling to swallow medication; (e) it is an effective route in the treatment of patients

with vomiting episodes. 4.Quality control of suppository The shape and size of a suppository must be such that the medicaments and base mixed uniformly with certain hardness under condition of shipment and storage capable of being easily inserted into the intended body orifice without causing undue distension. once inserted, the base melts, softens, or dissolves,

distributing the medicaments it carries to the tissues of the region. It must be retained for the appropriate period of time for local effects or quickly absorbed for systemic effects . Ingredients of suppositories contains drug,base and other adjuvant ,which the affecti ng factors for preparation are the physicochemical natu re of the drug, the nature of the suppository vehicle and its capacity to release the drug and clinical desired effect

s from administration Drug properties as the relative solubility of the drug in lipid a nd in water , the particle size of a dispersed drug. Base 1.requisites for a suppository base is that : 1)it remains solid at room temperature but softens, melts, or dissolves readily at body temperature so that the drug it c

ontains may be made fully available soon after insertion 2)with certain hydrophilic or hydrophobic character 3)melting point near to solidifying point 4) easily ejectable from mold 5) dont irritate to the mucous membranes 2.Classification of Suppository Bases According to bases physical characteristics the bases can be classified into

(1) fatty or oleaginous bases (2)water-soluble or water-miscible bases (1) fatty or oleaginous bases: Fatty bases are perhaps the most frequently employed s uppository bases . A lipophilic drug that is distributed i n a fatty suppository base in low concentration has less o f a tendency to escape to the surrounding aqueous fluids than would a hydrophilic substance present in a fatty ba

se to an extent approaching its saturation. fatty bases contains: (a) Cocoa Butter and (b) compounds of glycerin (a) Cocoa Butter the fat obtained from the r oasted seed of theobroma c acao. At room temperature it is

a yellowish, white solid hav ing a faint, agreeable choco late-like odor. Chemically, it is a triglyceride (combination of gly cerin and one or different fatty acids) primarily of oleopalmitostearin and oleodistearin. It melts between 30 to 36 , an ideal supposito to 36 to 36 , an ideal supposito, an ideal supposito ry base, melting just below body temperature and

yet maintaining its solidity at usual room tempera tures. because of its triglyceride content, cocoa butter exhibi ts marked polymorphism, or different crystalline for ms , ,,. Because of this, when cocoa butter is hastily or careles sly melted at a temperature greatly exceeding the min imum required temperature and then quickly chilled,

As a result a metastable crystalline form ( crystals) with a melting point much lower than the original coc oa butter that the cocoa butter will not solidify at roo m temperature. Since the form represents a metastable condition, ther e is a slow transition to the more stable form of cryst als having the greater stability and the higher melting point.

Cocoa butter must be slowly and evenly melted. Prefe rably over a water bath of warm water, to avoid the fo rmation of the unstable crystalline form and ensure th e retention in the liquid of the more stable crystals t hat will constitute nuclei upon which the congealing m ay occur during chilling of the liquid. Substances such as phenol and chloral hydrate have a tendency to lower the melting point of cocoa butter wh

en incorporated with it. If the mp is lowered to such an extent that it is not feas ible to prepare a solid suppository using cocoa butler alone as the base, solidifying agents like cetyl esters w ax (about 20%) or beeswax (about 4%) may be melted with the cocoa butter to compensate for the softening effect of the added substance. However, the additions of hardening agents must

not be so excessive as to prevent the melting of the base after the suppository has been inserted into the body, nor must the wax material interfere with the therapeutic agent in any way so as to alter the efficacy of the product. (b) compounds of glycerin The higher molecular weight fatty acids, such a

s palmitic and stearic acids, may be found in fa tty suppository bases. Such compounds as glyceryl monostearate and glyceryl monopalmitate are examples of this ty pe of agent. (2) water-soluble or water-miscible bases (a) Glycerinated gelatin This base is slower to soften and mix with the physiolog

ic fluids , therefore provides a more prolonged release; Because it have a tendency to absorb moisture due to t he hygroscopic nature of glycerin, the suppository must be protected from atmospheric moisture in order for th em to maintain their shape and consistency Due also to the hygroscopicity of the glycerin, the supp ository may have a dehydrating effect and be irritating to the tissues upon insertion.

The water present in the formula for the suppositories minimizes this action; however, if necessary, the suppositories may be moistened with water prior to their insertion to reduce the initial tendency of the base to draw water from the mucous membranes and irritate the tissues. A glycerinated gelatin base is most frequently used in the preparation of vaginal suppositories, where the prolonged

localized action of the medicinal agent is usually desired. vaginal suppositories are much more easily inserted than suppositories with a cocoa butter base, owing to the brittleness of cocoa butter and its rapid softening at body temperature. (b) Polyethylene glycols They are available in a number of molecular weight ranges, the more commonly used being polyethylene

glycol 200,400, 600,1000,1500,1540, 3350, 4000,6000, and 8000. The numerical designations refer to the average molecular weights of each of the polymers. Various combinations of these polyethylene glycols may be combined by fusion, using two or more of the various types to achieve a suppository base of the desired consistency and characteristics. Polyethylene glycol suppositories do not melt at

body temperature but rather dissolve slowly in the body's fluids. If the polyethylene glycol suppositories do not contain at least 20%of water to avoid the irritation of the mucous membranes after insertion, they should be dipped in water just prior to use. (c) polyoxyl 40 stearate a surface-active agent with the average polymer l

ength being equivalent to about 40 oxyethylene u nits. The substance is a waxy, white to light tan solid t hat is water-soluble. Its melting point is generally between 39 to 36 , an ideal supposito and 45 to 36 , an ideal supposito. Preparation of Suppositories Suppositories are prepared by two methods: (1) Preparation by compression

(2) Fusion or preparation by mold (1) Preparation by Compression: Suppositories may be prepared by forcing the mixed mass of the suppository base and the medicaments int o special molds using suppository making machines. In preparation for compression into the molds, the su ppository base and the other formulative ingredients a re combined by thorough mixing, the friction of the p

rocess causing the base to soften into a paste-like consi stency. (a)cold Compression: The process of compression is especially suited for the making of suppositories containing medicinal substances that are heat labile and for suppositories containing a great deal of substances insoluble in the base.

(b) hand rolling and shaping: With the ready availability of suppository molds of accommodating shapes and sizes, there is little requirement for today's pharmacist to shape suppositories by hand. Hand rolling and shaping is a historic part of the art of the pharmacist.

(2) Fusion or preparation by mold The method is most frequently employed in the preparation of suppositories both on a small scale and on an industrial scale. Mold shape Molds in common use today are made from stainless steel. The molds, which separate into sections, generally

longitudinally, are opened for cleaning before and after the preparation of a batch of suppositories. Care must be exercised in cleaning the mold for the desired smoothness of the resulting suppositories. LUBRICATION OF THE MOLD Depending upon the formulation, suppository molds may require lubrication before the melt is poured to facilitate the clean and easy removal of the molded

suppositories. Lubrication is seldom necessary when the suppository base is cocoa butter or polyethylene glycol. Lubrication is usually necessary when glycerinated gelatin suppositories are prepared. Any materials which might cause irritation to the mucous membranes should not be employed as a mold lubricant.

the steps in molding (a) the melting of the base (b) incorporating of any required medicaments (c) pouring the melt into molds (d) allowing the melt to cool and congeal into suppositories (e) removing the formed suppositories from the mold. Notice:Suppositories of cocoa butler, glycerinated gelatin, polyethylene glycol, and most other suppository bases are suitable for preparation by molding.

pouring the melt into molds removing the formed suppositories CALIBRATION OF THE MOLD Each individual mold is capable of holding a specific volume of material in each of its openings.

If the material is changed, the weight of the resulting suppositories will differ from the weight of suppositories prepared in the same mold because of the difference in the densities of the materials. Similarly, any added medicinal agent would further alter the densities of the bases, and the weights of the resulting suppositories would be different from those prepared with base material alone.

It is important that the pharmacist calibrate each of his suppository molds for the suppository bases that he generally employs in order that he may prepare medicated suppositories each having the proper quantity of medicaments. First step : to prepare molded suppositories from base material alone. After removal from the mold, the suppositories are weighed, and the total weight and the average weight of each suppository are

recorded as G Second step : to prepare molded suppositories from base and drug. After removal from the mold, the suppositories are weighed, and the total weight and the average weight of each suppository are recorded as M

Third step : to calculate the displacement value by the equation below: W DV G (M W ) y x (G

) n DV G W M G-(M-W)

For example: Prepare the suppositories using cocoa buffer. The average weight of each blank suppository is 3.5g. Then adding 1.5g drugs into cocoa buffer and preparing a medicated suppository. The weight of the medicated suppository is 4.2g. Please calculate the dosage of cocoa buffer if 10 medicated suppositories, every medicated suppositories contain 1.0g drug, want to be prepared.

Packaging and Storage Most commercially available suppositories are: individually wrapped in either foil or a plastic material. Some are packaged in a continuous strip with suppositories being separated by tearing along perforations placed between suppositories Suppositories are also commonly packaged in slide boxes or in plastic boxes.

maintain in a cool place. stored in environments of fitting humidity flash1 flash2 Treating role and Clinical applying systemic action: medicaments may be intended to be absorbed for the exertion of systemic effects

local action :medicaments may be intended for retention within the cavity for localized drug effects. Systemic Action For systemic effects, the mucous membranes of the rectum and vagina permit the absorption of many soluble drugs. Although the rectum is utilized quite frequently as the site for the systemic absorption of drugs, the vagina is not as

frequently used for this purpose. Absorption route: According to the course of venous flow, a drug absorbed in the lower part of the rectum should enter the vena cava; A drug placed in the upper part of the rectum should diffuse into blood vessels which lead to the liver.

Affecting factors for absorption The factors affecting the rectal absorption of a drug admini stered in the form of a suppository may be divided into : (1)physiologic factors: colonic contents, circulation route, and the pH and lack of buffering capacity of the rectal fluids (2) physicochemical factors of the drug and the base: The lipi d-water partition coefficient;particle size; nature of the bases

Glossary Ointments bases; oleaginous; hydrocarbon bases; absorptio n bases; water-removable bases;water-soluble bases ; Petrol atum ; Vaseline; Paraffin ; Anhydrous lanolin ; Hydrophilic; Antioxidants; incorporation method; fusion method; emulsif ication method; ophthalmic ointments; Suppositories; Body orifices ; Rectal; Vaginal; melting point ; Cocoa Butter ; polymorphism; hygroscopicity; Glycerinate d gelatin ; Polyethylene glycols; polyoxyl 40 stearate; displac

ement value

Recently Viewed Presentations

  • What were the differences between the lives of the rich and ...

    What were the differences between the lives of the rich and ...

    What were the differences between the lives of the rich and poor in Tudor Times? Learning objective: To learn about life in Tudor times What are the names of the Tudor Kings and Queens? Henry VII Henry VIII Edward VI...
  • Integration testing - Ernesto Kardzio blogas

    Integration testing - Ernesto Kardzio blogas

    Top down integration testing is an incremental integration testing technique which begins by testing the top level module and and progressively adds in lower level module one by one. Lower level modules are normally simulated by stubs which mimic functionality...
  • Aquatic Ecosystems Marine Ecosystems  Marine ecosystems are located

    Aquatic Ecosystems Marine Ecosystems Marine ecosystems are located

    Estuaries are very productive because they constantly receive nutrients from the river and ocean while the surrounding land protects the estuaries from the harsh force of ocean waves. ... plankton form the basis of the Antarctic food web, nourishing large...
  • #1 #3  Qu hacen los estudiantes?  Qu hace

    #1 #3 Qu hacen los estudiantes? Qu hace

    Los verbos. Palabrasqueterminan en (words that end in) -AR, -ER, -IR . se llaman. verbos (verbs) en inglés.
  • The Psychology of Survey Responses: Implications for ...

    The Psychology of Survey Responses: Implications for ...

    Roger Tourangeau, SRC, JPSM Robert M. Groves, SRC, JPSM Stanley Presser, JPSM ... George W. Bush ran on the Republican ticket against John Kerry for the Democrats. In the 2004 presidential election, did things come up that kept you from...
  • TITUS 1:1-9 TITUS 1:1-9 Dates are approximate  Conversion

    TITUS 1:1-9 TITUS 1:1-9 Dates are approximate Conversion

    TITUS1:1-9. Titus 1:1-9 ~ 1 Paul, a bondservant of God and an apostle of Jesus Christ, according to the faith of God's elect and the acknowledgment of the truth which accords with godliness, 2 in hope of eternal life which...
  • US History 1945 through the 1950's.

    US History 1945 through the 1950's.

    Igor Gouzenko. The Cold War Comes Home. 1945, Soviet documents shows plans to infiltrate American society. - Brought to the US by a Soviet defector. - Oh boy, here we goooo….. 3. Cold War at Home 1940s to 1950s. The...
  • DNA - Deoxyribose Nucleic Acid

    DNA - Deoxyribose Nucleic Acid

    DNA - Deoxyribose Nucleic Acid 1. DNA is composed of a chain of nucleotides, each made up of a sugar group, a phosphate group, and a nitrogenous base.