Ionospheric TEC Gradient Magnitude Distribution over the Brazilian

Ionospheric TEC Gradient Magnitude Distribution over the Brazilian

Ionospheric TEC Gradient Magnitude Distribution over the Brazilian Airspace Patricia Doherty, Rezy Pradipta and Endawoke Yizengaw Institute for Scientific Research Boston College Image Source: http://www.ainonline.com AGU 100 Fall Meeting Washington, DC 10 December 2018

SA12A Multiscale Ionosphere Structuring Processes and Related Impact on Technology 1 The Roles of SBAS/GBAS in Civil Aviation SBAS/GBAS Benefits Enabling precision approach at all runways Increasing safety Increasing capacity Reducing delays Reducing equipment cost SBAS/GBAS Challenges Large ionospheric gradients

Scintillation Demand for Air Travel continues to increase. Aging ground-based radio navigation aides cannot keep up. ICAO has committed to advancing satellite based navigation. Outline and Summary Ionospheric threats to SBAS/GBAS operations - midlatitude scenario: storm-enhanced density during geomagnetic storms - equatorial scenario: equatorial plasma bubbles (TEC depletions) at night; scintillation Studies of large TEC gradients over the Brazilian sector in 20112016: representative examples - large TEC gradients due to steep side walls of equatorial plasma bubbles - large TEC gradients due to density irregularities inside equatorial bubbles

Statistical distribution/properties of TEC gradient magnitudes over Brazil in 2011-2016 TEC gradient magnitudes can reach ~1000 mm/km at L1 frequency - 2x size of gradients seen in the CONUS SED events TEC gradient magnitudes follow a power law distribution (a peculiar one) Compare TEC gradient magnitudes with a scintillation proxy (ROTI) SBAS and GBAS Systems Play an important role in aviation safety to ensure the accuracy, availability and integrity of navigation information

Broadcast correction messages allowing navigation and control systems to take ionospheric delays into account for precise positioning calculation Steep ionospheric gradients and scintillation can threaten these systems SBAS Wide-area or regional scale GBAS Localized/airport service (Figures: www.faa.gov) Midlatitude Threat: Storm-Enhanced Density Nominal upper bound for CONUS during SED: ~425 mm/km at GPS L1 frequency

Quiet time TEC gradients for CONUS: ~40mm/km or lower On the average, 30 geomagnetic storms per year, where 30% of them are major geomagnetic storms (Refs: Datta-Barua et al., 2010; Lekshmi et al., 2011) Low-latitude Threat: Equatorial Plasma Bubbles Seen as depletions in TEC. Bubbles of different shapes and sizes. (Pradipta et al., 2015)

(Pradipta et al., 2015) EPBs are seeded at the bottom layer of the ionosphere, then plumes of low density plasma rises upward Gradients can come from the side walls and the irregularities inside the bubble EPBs can occur night-after-night for the duration of several months Aircraft can sample much different ionosphere in the vicinity of a bubble GPS Receiver Locations and Timespan of the Study

GPS receivers located in between the geomagnetic equator and -20o geomagnetic latitude Nighttime TEC gradients most severe in this area Time span from 2011-2016 (solar cycle 24) January to March: peak season for nighttime EPBs and ionospheric scintillation over Brazil The Brazil Case Study Measuring Gradients Two independent ways to estimate the TEC gradients: The 1st method (station-pair method) gives us the TEC gradient values along a fixed direction dictated by the station geometry. Advantage: instantaneous measurement of the TEC gradient; Disadvantage: need two closely-spaced receiver stations; The 2nd method (single-station method) gives us the TEC gradient values

parallel along the IPP trajectory. Advantage: not constrained by the availability of station pair; Disadvantage: intertemporal measurement from consecutive epochs; Further disadvantage working in equivalent vertical TEC. TEC gradients are rather conservative. Slant TEC gradients, esp. at low elevation might be larger. TEC Gradient Case Examples (1 of 2) The sharp isolated spikes in the TEC gradient indicate that the side walls of the bubbles played the dominant role in this case

(>300mm/km) TEC Gradient Case Examples (2 of 2) Large TEC gradients due to steep side walls (A, B, C) Smaller gradients observed inside bubble (F) (>600mm/km) Distribution Statistics of TEC Gradient Magnitudes over the Brazil (2014-2015) early results The TEC gradient magnitudes associated with equatorial plasma bubbles

extend up to ~1000 mm/km at GPS L1 frequency. The TEC magnitude distribution varies with season, but no apparent spatial variability across longitudes within the Brazilian sector. Cumulative Distribution of TEC Gradient Magnitudes over the Brazil - 2014-2015 Follows a form of power law distribution Exponents of the power law found via linear curve fitting Slope of the best fit line corresponds to the power law exponent

Different exponents for two different regimes Break at 200 mm/km Final drop at 800mm/km More precise physical mechanism responsible for this power law is subject of ongoing research. (Pradipta and Doherty, 2016)

Distribution Function of TEC Gradient Magnitudes 2011-2016 (double power law exhibited each year) 2 exponents with a break between 200-300mm/km solar cycle variation in the power-law exponents low sunspot: more negative power law exponents/distribution falls off more rapidly higher sunspots: less negative exponents/distribution

function falls off more slowly creating a heavier tail in the gradient distribution TEC Gradients and ROTI Comparison Brasilia January 2013 and 2014 - Nighttime ROTI = Std Dev of the TEC time rate of change, calculated over 5 minute window ROTI: an indicator of ionospheric plasma density irregularities that can lead to scintillation During the observations of large TEC gradients, ROTI was also high. Summary and Conclusions Ionospheric TEC gradients associated with equatorial plasma bubbles pose threat to SBAS/GBAS

The nighttime ionospheric TEC gradient magnitudes follow a double-power-law distribution The power-law exponents vary systematically according to the progression of solar cycles During a max/peak of the solar cycle, TEC gradients with extreme magnitudes may occur more often Future work: to investigate more precise origin(s) of the double-power-law behavior and to determine the possibility to possibly extrapolate to other years Thank you for your attention. Patricia H. Doherty [email protected]

Phone: 617-552-8767 Fax: 617-552-2818 http://www.bc.edu/isr We thank the Federal Aviation Administration for support under Cooperative Agreement DTFAWA-17-C-80005 We also thank the Instituto Brasileiro de Geografia e Estatistica (IBGE) for the GPS data form the RBMC network.

Recently Viewed Presentations

  • Implementation of a Risk-Based Process Safety Management System

    Implementation of a Risk-Based Process Safety Management System

    CCPS determined that at least 6 of the elements are critical to success: Process Safety Culture, Compliance with Standards, PHA, Management of Change, Asset Integrity and Reliability and Metrics. Review the practices for selected elements of interest. Delete any practices...
  • Dias nummer 1 - Aalborg Universitet

    Dias nummer 1 - Aalborg Universitet

    Teori om remediering Velkommen til workshoppen om remediering af undervisning. I nedenstående links finder i tekster om en række emner som vi kommer til at behandle i workshoppen.
  • Exeter Township December 31, 2016 Audit Results Presented

    Exeter Township December 31, 2016 Audit Results Presented

    Unmodified Opinion for the governmental fund financial statements. Adoption of GASB 72, Fair Value Measurement and Application - additional disclosures relative to the Township's pension plan investments.
  • GRAPHS AND TABLES Chapter 1-3

    GRAPHS AND TABLES Chapter 1-3

    This graph shows an amount and a span of time. What is a century? What trend does this line graph show? What trend does this line graph show? If the trend continues, where will all of these new Texans live?...
  • GOVERNMENT OF KARNATAKA Welcomes you to a presentation

    GOVERNMENT OF KARNATAKA Welcomes you to a presentation

    GOVERNMENT OF KARNATAKA Welcomes you to a presentation on Information and Communication Technologies ( ICT) in schools by Dr. R.G. Nadadur, IAS Principal Secretary
  • Transportation Provider Compliance Training FRAUD, WASTE AND ABUSE

    Transportation Provider Compliance Training FRAUD, WASTE AND ABUSE

    CMS. Centers for Medicare and Medicaid Services, also referred to as CMS: An agency within the US Dept. of Health and Human Services . Responsible for several health care programs and rules regarding FWA that must be followed by MTM,...
  • Systems Analysis and Design 8th Edition Chapter 11

    Systems Analysis and Design 8th Edition Chapter 11

    Three-level structure charts relate to the three DFD levels. Structured Application Development. Steps in Drawing a Structure Chart. Step 3: Add Couples, Loops, and Conditions ... Structured walkthrough, or code review. Design walkthrough. Testing the System. Unit Testing. Integration Testing.
  • T t - leibniz-fli.de

    T t - leibniz-fli.de

    Referring in particular to the FCGR3 publication we can conclude, that the appearance of structural variations of the same loci in different mammalian genomes is a strong indication of genome plasticity as a general biological phenomenon and widespread impact in...