This project is all about mud! Louisiana Mud

This project is all about mud! Louisiana Mud

This project is all about mud! Louisiana Mud Experiment Scope Introduction Experimental Design Wind Data Mud Samples Examine Three Case Studies ( 2 high & 1 low energy event) Conclusions Introduction Experiments have shown mud-induced wave attenuation to be very efficient Up to 90% of the initial wave height can dissipate within a few wavelengths Present paradigm for mud-induced dissipation between low and high frequency waves Significant sediment resuspension and deposition processes may affect short waves such as storms or river outflows What is causing the dissipation? Is it a muddy seafloor or a muddy water column(i.e. fluid mud)? Introduction Experimental Design Purpose: Measure wave dissipation over a muddy seafloor Where: Louisiana shelf in the Gulf Of Mexico When: Feb to Mar 2008 Equipment (4 Types): -Pressure and velocity bottom mounted (PUVx6) -Aquadopp profiler-fitted with PUV sensor(AQx6) -Pressure bottom mounted (PAx8) -Directional waverider buoys surface (DWx2) PUV-samples at 2Hz for 68mins every 4hrs PA-samples at 2Hz continously AQ-samples at 1Hz for 34mins every 1hr DW-samples at 1.28Hz continously Thats me! AQ

PUV PUV Experimental Design DW PA Experimental Design New Orleans Grand Chenier Marsh Island Western Central Eastern Experimental Design 10GB of data recorded Need to conduct analysis of data using Matlab Compare plots of significant wave height, peak period, direction of peak period along various transects Compare wind data Examine changes in energy spectra along various transects Identify wave dampening along transects during different case studies Quantitatively assess wave dampening and compare with observations Just the start of my thesis POSITIONS FOR ALL SENSORS DEPLOYED (PUV, PA, DW) Western Central Wind data Location of buoys WHOI buoy LSU/CSI03 NDBC 42001, 470km to South East Wind Data Comparison WHOI(red) vs LSU(blue) Mud Samples Leg 1

Mud Samples Leg 1 Case Study Overview West Transect Leg 1 Hs vs Time for Western Transect - Leg 1 Hs(m) 2 Case 1 1 0 02/03 02/10 PV2 PA3 PV4 PA6 Case 2 02/17 02/24 03/02 03/09 Date Tp vs Time for Western Transect - Leg 1 Tp(s) 10 PV2 PA3 PV4 PA6 8 6 4 02/03 02/10

02/17 02/24 03/02 03/09 Date Tp Direction(deg) Tp Direction vs Time for Western Transect - Leg 1 100 PV2 PV4 0 -100 02/03 02/10 02/17 02/24 Date 03/02 03/09 Case Study Overview Central Transect Leg 1 Hs vs Time for Central Transect - Leg 1 Hs(m) 2 Case 1 1 0 02/03 02/10 Case 2 02/17

02/24 PV7 PA8 PV9 PA10 03/02 03/09 Date Tp vs Time for Central Transect - Leg 1 Tp(s) 10 PV7 PA8 PV9 PA10 8 6 4 02/03 02/10 02/17 02/24 03/02 03/09 Date Tp Direction(deg) Tp Direction vs Time for Central Transect - Leg 1 100 PV7 PV9 0 -100 02/03 02/10

02/17 02/24 Date 03/02 03/09 Case Study Overview West Transect Leg 2 Hs vs Time for Western Transect - Leg 2 Hs(m) 3 PV2 PA3 PV4 PA6 Case 3 2 1 0 03/02 03/09 03/16 Date 03/23 03/30 Tp vs Time for Western Transect - Leg 2 Tp(s) 15 PV2 PA3 PV4 PA6 10 5 0 03/02

03/09 03/16 Date 03/23 03/30 Tp Direction(deg) Tp Direction vs Time for Western Transect - Leg 2 100 PV2 PV4 0 -100 03/02 03/09 03/16 Date 03/23 03/30 Case Study 1 West Transect Leg 1 Hs vs Time for Western Transect, Case 1 & 2 (13 Feb - 19 Feb), Leg 1 Hs(m) 2 PV2 PA3 PV4 PA6 1 0 02/13 02/14 02/15 02/16

Date 02/17 02/18 02/19 Wind speed [m/s] 20 10 0 02/13 spdW 02/14 02/15 02/16 Date 02/17 02/18 02/19 N Direction W PV2 PV4 dirW S E N 02/13 02/14 02/15 02/16 Date

02/17 02/18 02/19 Case Study 1 West Transect Leg 1 Energy Spectra vs Freq, 17-Feb-2008 04:00, West Transect, Leg 1 5 Energy Spectra(cm 2/Hz) 10 4 10 3 10 PV02 PA03 PA06 70% of one order of magnitude 2 10 1 10 0 10 0 0.05 0.1 0.15

0.2 0.25 0.3 0.35 Freq(Hz) Direction of Spectra vs Freq 150 Direction(Deg) 100 50 PV2dir1 PV2dir2 0 -50 -100 -150 0 0.05 0.1 0.15 0.2 Freq(Hz) 0.25 0.3 0.35 Case Study 1 West Transect Leg 1 Incident angle=45 degrees, Depths:PV4=9.75m, PA6=6.36m Freq 0.08 0.10 0.15 0.20 0.25 0.30 0.35

_1 117.116 91.377 55.595 36.422 24.637 17.319 12.744 _2 96.034 75.608 47.583 32.768 23.393 17.033 12.698 VertAtt_1 VertAtt_2 Amp_ratio Energy_ratio 1.140 1.088 1.014 1.028 1.233 1.143 1.003 1.00 1.671 1.374 0.969 0.939 2.781 1.840 0.938 0.879 6.051 2.850 0.937 0.877 17.202 5.270 0.966 0.932 61.196 11.654 0.989 0.979 Incident angle=60 degrees, Depths:PV4=9.75m, PA6=6.36m Freq _1

_2 VertAtt_1 VertAtt_2 Amp_ratio Energy_ratio 0.08 117.116 96.034 1.140 1.088 0.917 0.841 0.10 91.377 75.608 1.233 1.143 0.910 0.827 0.15 55.595 47.583 1.671 1.374 0.888 0.788 0.20 36.422 32.768 2.781 1.840 0.875 0.765 0.25 24.637 23.393 6.051 2.850 0.899 0.808 0.30 17.319 17.033 17.202 5.270 0.951 0.904 0.35 12.744 12.698 61.196 11.654 0.986 0.972 Case Study 1 Central Transect Leg 1 Hs vs Time for Central Transect, Case 1 & 2 (13 Feb - 19 Feb), Leg 1 Hs(m) 2 PV7

PA8 PV9 PA10 1 0 02/13 02/14 02/15 02/16 Date 02/17 02/18 02/19 Wind speed [m/s] 20 10 0 02/16 spdW 02/17 02/18 02/19 02/20 Date 02/21 02/22 02/23 02/24 N

Direction W PV7 PV9 dirW S E N 02/16 02/17 02/18 02/19 02/20 Date 02/21 02/22 02/23 02/24 Case Study 1 Central Transect Leg 1 Energy Spectra vs Freq, 17-Feb-2008 04:00, Central Transect, Leg 1 5 Energy Spectra(cm2/Hz) 10 4 10 PV07 PA08 PV09 PA10 3 10

2 One full order of magnitude 10 1 10 0 10 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 Freq(Hz) Direction of Spectra vs Freq 150 Direction(Deg) 100 50 PV7dir1 PV7dir2 PV9dir1 PV9dir2 0 -50 -100 -150 0 0.05

0.1 0.15 0.2 Freq(Hz) 0.25 0.3 0.35 Case Study 1 Central Transect Leg 1 Incident angle=60 degrees, Depths:PV9=8.75m, PA10=5.63m Freq _1 _2 VertAtt_1 VertAtt_2 Amp_ratio Energy_ratio 0.08 111.448 90.646 1.124 1.077 0.918 0.843 0.10 87.189 71.502 1.205 1.125 0.911 0.830 0.15 53.589 45.316 1.574 1.320 0.890 0.791 0.20 35.624 31.542 2.447 1.698 0.873 0.762 0.25 24.432 22.826

4.798 2.461 0.885 0.783 0.30 17.288 16.836 12.046 4.149 0.931 0.867 0.35 12.741 12.651 37.417 8.222 0.975 0.950 Incident angle=75 degrees, Depths:PV9=8.75m, PA10=5.63m Freq 0.08 0.10 0.15 0.20 0.25 0.30 0.35 _1 111.448 87.189 53.589 35.624 24.432 17.288 12.741 _2 90.646 71.502 45.316 31.542 22.826 16.836 12.651 VertAtt_1 VertAtt_2 Amp_ratio Energy_ratio 1.124 1.077 0.708 0.501 1.205

1.125 0.704 0.496 1.574 1.320 0.695 0.484 2.447 1.698 0.699 0.488 4.798 2.461 0.743 0.553 12.046 4.149 0.843 0.711 37.417 8.222 0.942 0.887 Case Study 2 West Transect Leg 1 Hs vs Time for Western Transect, Case 3 (16 Feb - 24 Feb), Leg 1 Hs(m) 2 PV2 PA3 PV4 PA6 1 0 02/16 02/17 02/18 02/19 02/20 Date 02/21

02/22 02/23 02/24 Wind speed [m/s] 20 10 0 02/16 spdW 02/17 02/18 02/19 02/20 Date 02/21 02/22 02/23 02/24 N Direction W PV2 PV4 dirW S E N 02/16 02/17 02/18

02/19 02/20 Date 02/21 02/22 02/23 02/24 Case Study 2 West Transect Leg 1 Energy Spectra vs Freq, 20-Feb-2008 04:00, West Transect, Leg 1 6 Energy Spectra(cm 2/Hz) 10 4 10 PV02 PA03 PA06 2 10 Nearly one full order of magnitude 0 10 -2 10 0 0.05 0.1 0.15

0.2 0.25 0.3 0.35 Freq(Hz) Direction of Spectra vs Freq 150 Direction(Deg) 100 50 PV2dir1 PV2dir2 0 -50 -100 -150 0 0.05 0.1 0.15 0.2 Freq(Hz) 0.25 0.3 0.35 Case Study 2 West Transect Leg 1 Incident angle=60 degrees, Depths:PV4=9.68m, PA6=6.31m Freq _1 _2 VertAtt_1 VertAtt_2 Amp_ratio Energy_ratio 0.08 116.732 95.676

1.139 1.087 0.917 0.841 0.10 91.094 75.336 1.231 1.142 0.910 0.828 0.15 55.463 47.435 1.664 1.370 0.888 0.788 0.20 36.372 32.691 2.756 1.830 0.875 0.765 0.25 24.626 23.359 5.952 2.821 0.898 0.806 0.30 17.317 17.022 16.776 5.183 0.950 0.902 0.35 12.744 12.696 59.123 11.377 0.985 0.971 Incident angle=75 degrees, Depths:PV4=9.68m, PA6=6.31m Freq 0.08 0.10 0.15 0.20

0.25 0.30 0.35 _1 116.732 91.094 55.463 36.372 24.626 17.317 12.744 _2 95.676 75.336 47.435 32.691 23.359 17.022 12.696 VertAtt_1 VertAtt_2 Amp_ratio Energy_ratio 1.139 1.087 0.709 0.502 1.231 1.142 0.705 0.497 1.664 1.370 0.697 0.486 2.756 1.830 0.708 0.501 5.952 2.821 0.771 0.594 16.776 5.183 0.883 0.780 59.123 11.377 0.966 0.934

Case Study 2 Central Transect Leg 1 Hs vs Time for Central Transect, Case 3 (16 Feb - 24 Feb), Leg 1 Hs(m) 2 PV7 PA8 PV9 PA10 1 0 02/16 02/17 02/18 02/19 02/20 Date 02/21 02/22 02/23 02/24 Wind speed [m/s] 20 10 0 02/16 spdW 02/17 02/18 02/19 02/20

Date 02/21 02/22 02/23 02/24 N Direction W PV7 PV9 dirW S E N 02/16 02/17 02/18 02/19 02/20 Date 02/21 02/22 02/23 02/24 Case Study 2 Central Transect Leg 1 Energy Spectra vs Freq, 20-Feb-2008 04:00, Central Transect, Leg 1 4 10 Energy Spectra(cm 2/Hz) 3

10 PV07 PA08 PV09 PA10 2 10 Over one full order of magnitude 1 10 0 10 -1 10 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 Freq(Hz) Direction of Spectra vs Freq 150 Direction(Deg) 100 50

PV7dir1 PV7dir2 PV9dir1 PV9dir2 0 -50 -100 -150 0 0.05 0.1 0.15 0.2 Freq(Hz) 0.25 0.3 0.35 Case Study 2 Central Transect Leg 1 Incident angle=60 degrees, Depths:PV9=8.71m, PA10=5.57m Freq _1 _2 VertAtt_1 VertAtt_2 Amp_ratio Energy_ratio 0.08 111.212 90.186 1.124 1.076 0.918 0.843 0.10 87.015 71.150 1.204 1.123 0.911 0.830 0.15 53.503 45.119 1.570 1.316

0.889 0.791 0.20 35.588 31.432 2.435 1.687 0.872 0.760 0.25 24.422 22.772 4.754 2.432 0.883 0.779 0.30 17.286 16.816 11.876 4.069 0.929 0.864 0.35 12.741 12.645 36.689 7.992 0.973 0.947 Incident angle=75 degrees, Depths:PV9=8.71m, PA10=5.57m Freq _1 _2 VertAtt_1 VertAtt_2 Amp_ratio Energy_ratio 0.08 111.212 90.186 1.124 1.076 0.707 0.500 0.10 87.015 71.150 1.204 1.123 0.703 0.495 0.15 53.503 45.119

1.570 1.316 0.694 0.482 0.20 35.588 31.432 2.435 1.687 0.697 0.486 0.25 24.422 22.772 4.754 2.432 0.740 0.548 0.30 17.286 16.816 11.876 4.069 0.839 0.704 0.35 12.741 12.645 36.689 7.992 0.939 0.881 Case Study 3 West Transect Leg 2 Hs vs Time for Western Transect, Case 2 (16 Mar - 23 Mar), Leg 2 Hs(m) 3 PV2 PA3 PV4 PA6 2 1 0 03/16 03/17

03/18 03/19 03/20 03/21 03/22 03/23 Date Wind speed [m/s] 20 10 0 03/16 spdW 03/17 03/18 03/19 03/20 03/21 03/22 03/23 Date N Direction W PV2 PV4 dirW S E

N 03/16 03/17 03/18 03/19 03/20 Date 03/21 03/22 03/23 Case Study 3 West Transect Leg 2 Energy Spectra vs Freq, 19-Mar-2008 00:00, West Transect, Leg 2 5 Energy Spectra(cm 2/Hz) 10 4 10 PV02 PA03 PV04 PA06 3 10 60% of one order of magnitude 2 10 1 10 0

0.05 0.1 0.15 0.2 0.25 0.3 0.35 Freq(Hz) Direction of Spectra vs Freq 150 Direction(Deg) 100 50 PV2dir1 PV2dir2 PV4dir1 PV4dir2 0 -50 -100 -150 0 0.05 0.1 0.15 0.2 Freq(Hz) 0.25 0.3 0.35 Case Study 3

West Transect Leg 2 Incident angle=60 degrees, Depths:PV4=9.72m, PA6=6.27m Freq _1 _2 VertAtt_1 VertAtt_2 Amp_ratio Energy_ratio 0.08 116.952 95.390 1.139 1.087 0.917 0.841 0.10 91.256 75.118 1.232 1.141 0.909 0.827 0.15 55.539 47.316 1.668 1.367 0.886 0.786 0.20 36.401 32.628 2.770 1.822 0.872 0.761 0.25 24.633 23.331 6.009 2.798 0.896 0.802 0.30 17.318 17.013 17.018 5.115 0.948 0.899 0.35 12.744 12.694 60.299

11.160 0.985 0.969 Incident angle=75 degrees, Depths:PV4=9.72m, PA6=6.27m Freq 0.08 0.10 0.15 0.20 0.25 0.30 0.35 _1 116.952 91.256 55.539 36.401 24.633 17.318 12.744 _2 95.390 75.118 47.316 32.628 23.331 17.013 12.694 VertAtt_1 VertAtt_2 Amp_ratio Energy_ratio 1.139 1.087 0.707 0.500 1.232 1.141 0.703 0.495 1.668 1.367 0.695 0.483 2.770 1.822 0.705 0.496 6.009 2.798 0.767 0.588

17.018 5.115 0.880 0.775 60.299 11.160 0.965 0.932 Conclusion Dissipation is clearly evident in the significant wave height plots for each of the selected cases Dissipation seems to be slightly more prominent on the Central transect (possibly more mud on seafloor or suspended) Greater dissipation of energy is occurring at high frequencies than at low frequencies Only a small fraction of the wave energy decay can be explained from shoaling and refraction Strong dissipation of high frequency waves which are attenuated at the seafloor suggest dissipation is not a bottom interaction process Is suspended mud causing the dissipation? Not the muddy seafloor! Or a combination? Further investigation is needed with modelling (SWAN) References Elgar, S., and B. Raubenheimer(2008), Wave dissipation by muddy seafloors, J. Geophys. Res., 35, L07611. Gade,H.(1958), Effects of a non-rigid, impermeable bottom on plane surface waves in shallow water, J Mar. Res., 16, 61-82. Ng, C.(2000), Water waves over a muddy bed: a two layer Stokes boundary layer model, Coastal Eng., 40, 221-242. Sheremet, A., and G. W. Stone(2003), Observations of nearshore wave dissipation over muddy sea beds, J. Geophys. Res., 108(C11), 3357. Winterwerp, J., R. De Graaf, J.Groeneweg, and A. Luijendik(2007), Modelling of wave dampening at the Guyana mud coast, Coastal Eng., 54, 249-261. Questions?

Recently Viewed Presentations

  • Pr

    Pr

    FORM-the poem is written in irregular stanzas of free verse. It is in first person narrative. It is suggested that he/she is speaking for all horse whisperers. LANGUAGE-emotional language- shows how attached the horse whisperer is to the horses. Metaphor...
  • A warm welcome! Purpose of the meeting:  Update

    A warm welcome! Purpose of the meeting: Update

    At the end of Year 2, children will take SATs in: Reading. English grammar, punctuation and spelling. Maths. SATs have to be carried out during May but there are no set dates nationally - this will be a school decision....
  • Learning and Teaching Conference 22 April 2010 Online

    Learning and Teaching Conference 22 April 2010 Online

    Since finishing the course I have pro actively arranged a few meetings or attended events that previously I would have been too scared to attend on my own. Retrospectively reading the 'fixed vs. growth mindset' article on the moodle site,...
  • Department of Mathematics and Statistics

    Department of Mathematics and Statistics

    Placed into Calculus A with SAT Math score 650 and four years of math including Algebra I, Algebra II, Geometry, Trigonometry ... 4 or 5 on Calculus BC exam - placed into Calculus C. 3 on Calculus BC exam -...
  • DB Project Review 1

    DB Project Review 1

    MECHANICAL ENGINEERING MACHINE SHOP FINAL PRESENTATION Ricardo Ambriz, Ryan Cabrera, Jin Jang, JiYang Liu, Justin Nakamura, YanWen Wang, Justin Wu
  • Social Media Training Plan Presentation - Sheila O'Kane

    Social Media Training Plan Presentation - Sheila O'Kane

    Social learning is different from Bandura's Social Learning Theory. According to Clark (2012) Badura's Social Learning Theory is more detailed explaining how we learn from others. Social learning is more about the environment is which the learning takes place and...
  • Nafea Conference 2010

    Nafea Conference 2010

    Review and oversee the implementation of policies that relate to placements at a school, FHS and UTAS level and, where appropriate, develop new, uniform policies for consideration by Faculty Executive, Play an active role in participating in the PiH CPSD...
  • WEEK 1.4 ANTHEM WEEK 2 TEACHER WEEK AT

    WEEK 1.4 ANTHEM WEEK 2 TEACHER WEEK AT

    What is a "golden line"?. Anthem, Part IV:. We opened our eyes, lying on our stomach on the brick floor of a cell. We looked upon two hands lying far before us on the bricks, and we moved them, and...