Snímka 1 - Comenius University

Snímka 1 - Comenius University

BIOPHYSICS OF MUSCLE CONTRACTION Ivan Poliaek TYPES OF MUSCLES Skeletal muscle - striated muscle tissue existing under control of the somatic nervous system (voluntary control) Cardiac muscle - special striated muscle tissue of the heart

working automatically and under the influence of autonomic nervous system (involuntarily) Smooth muscle - non-striated muscle tissue activated by autonomic nervous system, hormones, or simply stretching Surrounds each bundle cell

Bundles of collagen fibers Fascia Becomes the muscle sheath which fuses with the tendon Surrounds each cell Deep structures of a sceletal muscle

Muscle fiber = muscle cell The sarcolemma the cell membrane (plasma membrane) of a muscle cell - conduct stimuli - an outer coat (thin layer of polysaccharides with collagen fibrils) that fuses with a tendon fiber (they collect into bundles to form the muscle tendons) Sarcoplasm - cytoplasm with organelles Myofibrils - cylindrical organelles contractive elements the actin and myosin filaments (the length a few m)

organized in repeated subunits along the length of the myofibril - sarcomeres Sarcoplasmic reticulum with T- tubules internal conductive system Structure of a muscle cell A microscopic photo and a scheme of a maximum contraction of sarcomere is about 30%

Skeletal muscle attached to the bones for movement several types of fibers (speed, stamina, fatique, force, motor unit size, structure...) cells - long multi-nucleated cylinders the length of muscle cell is a few mm (human sceletal muscle), the diameter is typically 100 150 m cytoskeleton supporting the cell shape Summary 1 What is basic and deep structure of skeleton muscle?

What is the sctructure of muscle cell (fiber)? How does this cell look like? What is the endomysium among the muscle cells for? What organel is responsible for contraction how is it arranged? What are contractille elements molecules? How is contraction performed? What does drive the muscle? What is making the muscle to contract? Motor fibers (axons of motoneurons) within the motor nerves

conduct action potentials to the neuro-muscular junction end-plate. Action potential at the pre-synaptic membrane - activates voltage-gated Ca channels - Ca2+ influx - vesicles with neurotransmitter Acetylcholine (ACh) release

acetylcholin into the synaptic cleft Acetylcholin binds with nicotinic receptors on postsynaptic membrane of muscle cell (motor end-plate) activation of Na channels depolarization = EPSP = end plate potential acetylcholine acetylcholine is eliminated

by breaking down with the acetyl cholinesterase nicotinic ACh receptor Intracellular recording from a muscle fiber A nerve impulse reaching the axon terminal releases ACh into the neuromuscular junction. ACh produces EPSP

= end plate potential (EPP) in the membrane beneath the terminal (the subsynaptic = end-plate membrane) (A in the graph), but not farther away (B). When the EPP reaches the threshold (about 50 mv), an action potential is generated that sweeps along the fiber (A to B in the graph).

If a single vesicle occasionally release ACh into the synaptic cleft the miniature EPSP (miniature end-plate potential) is produced NO ACTION POTENTIAL follows Full EPSP full end-plate potential - EPP (due to synaptic action : AP Ca2+ influx - many vesicles release) always reaches the firing level and produces action potential at the muscle cell. Action potential spreads along the sarcolemma and via T- tubules of the muscle cell depolarizes the terminal cisternae and the sarcoplasmatic reticulum.

Motor unit Connective tissue separates muscle cells - each one must be stimulated by a motoneuron Motor unit - all muscle cells innervated by the same motoneuron they will contract at the same time

Motor units vary in size - mostly mixture of motor units of different sizes large motor units >100 cells (typically slow postural muscles) small motor units about 10 cells (precise control fast acting muscles those moving the eye)

Recruitment of motor units Increasing level of central (motoneuronal) activation successive activation of higher threshold motor units

Summary 2 Where is the signal activating skeleton muscle coming from?

Where is it transmitted to the muscle? What is the function of Ca++? What is the name for EPSP at the muscle cell? What receptors and what mediator are involved in synaptic transmission from the motoneuron to the muscle cell? What is the course of action potential at the muscle fiber? How far (where) the action potential at the muscle cell travel? How many muscle cells are supplied with single motoneuron? Can nearby muscle fibers be activated differently? When and how much are all muscle fibers activated? the rest

intracellular The shape and some parameters of muscle fiber action potential extracellular Extracellular recording of parasternal muscle EMG 2 different motor units are present 200 V

10 ms The mechanism. What happens on the way from action potential to the contraction of the muscle? The sarcoplasmic reticulum surrounds the myofibrils and holds a reserve of the Ca2+ ions. A transverse T - tubules are the pathway for the action potential to signal the sarcoplasmic reticulum. Action potential on T-tubules - depolarizes

sarcoplasmic reticulum - activates voltage-gated Ca channels - Ca2+ released into intracellular space of muscle fiber Ca2+ initiates muscle contraction

Muscle contraction is provided by interaction of ACTIN (thin) and MYOSIN (thick) fibers (filaments). Tropomyosin covers binding spots of actin at a rest state. Muscle contracts when myosin heads make a cross-bridges (bonds) with actin and the heads bend pulling the actin filament deeper among the myosin filaments. the cycle : bind bend release 1 stroke 10-12 nm As far as Ca2+ and ATP is present (around the Actin and Myosin)

the cycle : binding, bending, releasing and straightening of myosin heads continue (contraction). Ca2+ is constantly pumped (by a Ca pump) back into the sarcoplasmic reticulum (& extracellular space, tubules, cisternae). In order to keep high Ca2+ concentration - further action potentials has to release it again and again. Without Ca2+ tropomyosin returns back (conformation) over actin filament blocking its binding loci stop contraction. Crossbridge binding Scheme of chicken muscle myosin head. The movement is likely much more distributed including the movement at the actin-myosin

interface. (Rayment et al. Science 261: 50-58, 1993) Each myosin molecule contains two peptide heavy chains which are cleaved enzymatically to produce a myosin tail and two globular heads or crossbridges. The crossbridge heavy chain has a tail region (shown in blue) around which two smaller peptides wrap. These peptides are the light

chains (yellow and red) which stabilize, and in some cases, regulate the myosin. Myosin filament with myosin heads each 14.5 nm. 294 myosin molecules on the thick filament (588 ATP-ase binding

spots). Ca2+ binds with troponin, changes shape (conformation) of tropomyosin that exposes the actin binding spots on actin filament. The muscle contraction requires the ATP. As the ATP is required to release the actin myosin binding without ATP : RIGOR MORTIS. For the unbinding the myosin head from the actin and its straightening, the ATP is required. Myosin hydrolyze ATP (lyse it into ADP and phosphate)

gathering the energy Summary 3 What is sarcoplasmic reticulum for? What happens when sarcoplasmic reticulum membrane is depolarized? What is the function of Ca++? What happens when the Ca++ is pumped back to the reticulum and other areas out of muscle cell intracellular space? How tropomyosin affect the muscle cell contraction? What is the role of ATP in muscle contraction? What happens when there is no ATP in the muscle cell? Why the sequence actin myosin connection bending myosin

heads (pulling the actin molecules) release and stretch of myosin heads occur? For what exactly is the ATP energy used? Increased 2+ intracellular Ca Single muscle twitch concentrations (Ca2+ released from sarcoplasmic reticulum and T

tubules) lasts longer than action potentials even longer lasts single muscle twitch - no action potential from other than related motoneuron - SUMMATION is TEMPORAL at the level of Ca2+ release and twitches overlapping Single muscle twitch unfused & fused tetanus A tetanic contraction - motor unit stimulated by a high frequency

of action potentials from its motoneuron The time between stimuli is shorter than single twitch durations no time to relax - superposition of muscle twitches and (temporal) summation of contraction The strength of contractions increases - it is added to the previous twitch Incomplete (unfused) tetanus Complete

(fused) tetanus The opposite acting muscle to the agonist is the antagonist (e.g. flexing the elbow biceps brachii - agonist, the triceps brachii - antagonist) An antagonist is never totally relaxed - control and damping of movement by maintaining tone against the agonist (eccentric movement)

Summary 4 What is the duration of the action potential, increased Ca++ intracellular concentration, and single muscle twitch? What type of summation works for muscle contraction? How many motoneurons can stimulate the particular muscle cell? Compare the frequencies of activation of a muscle cell during unfused and fused tetanus? How is maximum contraction of the muscle cell achieved? How are working oppositely connected muscles? Summary of muscle

contraction Short rest The time for thinking and organizing infos. MUSCLE PROPERTIES Elasticity or recoil - muscles have elastic elements which cause them to recoil to their original size. Stretchability or extensibility - muscles can also stretch and extend to a longer- thanresting length

Excitability and responsiveness - muscle tissue can be stimulated by electrical, physical, or chemical means Contractility transformation of chemical energy into the mechanical work - movement - the response of muscle tissue to stimulation is contraction, or shortening muscles can only pull, they cannot push Smooth muscle Visceral (smooth) muscle - in the body's internal organs and blood vessels

- no striations - layers in the mucous membranes of the respiratory and digestive systems, bands in the walls of blood vessels, and sphincter muscles. Smooth muscle fibers - a fusiform shape - a spindle-like shape (wide in the middle and tapers at both ends) - 20-500 m in length. The ratio of actin to myosin is ~ 6 : 1 in skeletal muscle, 4 : 1 in cardiac muscle and ~ 16.5 : 1 in smooth muscle. Greater elasticity and ability to stretch and still maintain contractility than striated muscle. Intestine

smooth muscle Smooth muscle contraction Contraction - sliding of myosin and actin filaments - hormones, neurotransmitters, drugs, etc. Single unit smooth muscle tissue is connected into a syncytium - the autonomic nervous system innervates a single cell within a sheet or bundle - the action potential propagates by gap junctions

to neighboring cells (all contract together). Smooth muscle may contract spontaneously - it is myogenic (via ion channel dynamics or pacemaker cells - interstitial cells of Cajal in the gastrointestinal tract). Smooth muscle contraction Multiunit smooth muscle tissues - individual cells are innervated by the autonomic nervous system (fine control and gradual responses, much like in skeletal muscle) - the trachea, the elastic arteries, the iris of the eye). No troponin, but instead calmodulin is regulatory protein in smooth

muscle, also tropomyosin doesn't serve the regulatory function as in striated muscle. Contraction is initiated by a Ca-regulated phosphorylation of myosin, rather than a Ca-activated troponin system. Smooth muscle thin filaments mainly actin, tropomyosin, and caldesmon.

Summary 5 What is elasticity, stretchability, excitability, and contractiliry? What are main differences between skeletal and smooth muscles? What does it mean syncytium? What does it mean myogenic activity? What is the molecule the Ca++ interact with in the smooth muscle vell instead of troponin of skeleton muscle cell? How is contraction of multiunit smooth muscle cell initiated? Heart muscle

Cardiac muscle - much shorter cells than skeletal muscle - cardiac muscle cells connect to one another - gap junctions - intercalated discs - electrochemical impulse can pass to all connected cells syncytium (the cells work as a unit)

Faint striations - similar, but not identical, arrangement of myofilaments in cardiac and skeletal muscle Many cardiac muscle cells are myogenic activation arises in the heart not from the nervous system - heart natural rhythm A scheme of intercalated discs of cardiac muscle cytosol gap junctions create cytoplasmic bridges

connexin proteines intercellular space cell membrane In cardiac myocytes, influx of Na trigger calciuminduced calcium release - Ca2+ influx through voltagegated calcium channels on the sarcolemma leading to the release of Ca2+ from the sarcoplasmic reticulum and its relation to the ECG waveform

Long-lasting action potential - long refractory period - no temporal summation - no tetanic contraction Relation of electrical and mechanical characteristics of heart action Spreading of electrical (action potential) activity from the sinoatrial node to the tissue of heart atria &

atrioventricular node and then into the ventricular heart tissue with the recording of the related ECG waveform. Summary 6

What is function of intercalated discs? How are cardio-myocytes activated? What is calcium induced calcium release? What is the consequence of it? How much longer is cardio-myocyte action potential than neuron action potential? A comparison of the properties of skeletal, cardiac, and visceral muscle Property

Skeletal Muscle Cardiac Muscle Smooth Muscle Striations? Yes

Yes No Relative Speed of Contraction Fast Intermediate Slow

Voluntary Control? Yes No No Membrane Refractory Period Short

Long Nuclei per Cell Many Single Single Control of Contraction

Nerves Beats spontaneously but modulated by nerves Nerves Hormones Stretch Cells Connected by Intercalated Discs or

Gap Junctions? No Yes Yes

Recently Viewed Presentations

  • AC Electrical Conductivity in Metals (Brief discussion only,

    AC Electrical Conductivity in Metals (Brief discussion only,

    (Brief discussion only, in the free & independent electron approximation) Application to the Propagation of Electromagnetic Radiation in a Metal Consider a time dependent electric field E(t) acting on a metal. Take the case when the wavelength of the field...
  • Radiation and Life

    Radiation and Life

    Note that F and a are vector quantities. With this formula, it is demonstrated that exerting a net force on an object will accelerate it (speed it up or slow it down). Consider the example of throwing the book in...
  • ROUTE Chapter 8

    ROUTE Chapter 8

    Implementing IPv6 in the Enterprise Network CCNP ROUTE: Implementing IP Routing ...
  • Johann Pestalozzi By: Mike Ehnot, Ashley Parker, Sam Hallock ...

    Johann Pestalozzi By: Mike Ehnot, Ashley Parker, Sam Hallock ...

    Johann Pestalozzi By: Mike Ehnot, Ashley Parker, Sam Hallock and Ashlee Brown Background Information… Was a Swiss educator Full name was Johann Heinrich Pestalozzi Born on January 12, 1746 and died February 17, 1827 Did not enter school until he...
  • WORLD LITERATURE MS. FITZVocabulary Level E Unit 1

    WORLD LITERATURE MS. FITZVocabulary Level E Unit 1

    MONDAY- Hand back papers, work on essays (finish intros, body paragraphs) ***HOMEWORK TONIGHT***-Check out Fitz's blog -study Vocabulary Unit1
  • Arts Integration - Westport Middle School

    Arts Integration - Westport Middle School

    What is arts integration? Arts Integration is an APPROACH to TEACHING in which students construct and demonstrate UNDERSTANDING through an ART FORM.Students engage in a CREATIVE PROCESS which CONNECTS an art form and another subject area and meets EVOLVING OBJECTIVES...
  • Agenda 4:15  5:15 Guest: Harry Bims, Ph.D., Expert

    Agenda 4:15 5:15 Guest: Harry Bims, Ph.D., Expert

    The ADVERSARY SYSTEM presumes that we (society) reach truth when we have two opposing parties with lawyers who can examine, object, introduce evidence, etc. Some of your questions seemed to presume that there was no opponent, and that if BIMS...
  • Our Classroom News Week of: April 1-12, 2019

    Our Classroom News Week of: April 1-12, 2019

    Unit 2 Week 3- lend send fast past sink wink run bug of who Unit 2 Week 4- fish shop ship with thing sang fast wink want call. Spelling Words. November 5-9, 2018 and November 12-16, 2018. Our Classroom News...