The Ozone Layer: Formation and Depletion

The Ozone Layer: Formation and Depletion

The Ozone Layer: Formation and Depletion Outline of Lectures Introduction Structure and function of the ozone layer Briefly: health effects of ozone depletion Formation of the Ozone Layer The Chapman cycle

Problems with the Chapman cycle Catalytic Destruction of the Ozone Layer General mechanism

Sources of catalysts, including CFCs CFC-induced ozone destruction Relative contributions of different catalysts The ozone hole Phasing Out CFCs and other ODSs Global trends in stratospheric ozone and ground-level UV light The Montreal Protocol Ozone Layer: Function Question What does the ozone layer do for us? Ozone is the only major atmospheric constituent that absorbs significantly

between 210 and 290 nm. Without it life would have remained underwater The ozone layer is a consequence of oxygen-only chemistry. It formed once photosynthetic marine organisms (cyanobacteria) began polluting the atmosphere with oxygen. Attenuation of Solar Flux in the Stratosphere Ground-level sunlight is limited to < 290nm Stratosphere filters out light between 180 and

290 nm There is a spectral window centered at 205nm where uv light penetrates more deeply into the stratosphere. UV Absorption by Dioxygen and Ozone O3 Health Effects of Ozone Depletion B() is the biological damage function as a

function of wavelength F() is the light that penetrates to ground level for two different column ozone levels: normal and depleted. The product B()F() gives an indication of the additional biological damage potentially caused by ozone depletion The Ozone Layer

Lecture Questions At what altitudes is the ozone layer located? 16 35 km (above bkgd level) Stratosphere contains about 90% of all atmospheric ozone Total column ozone: ~300 DU (1 DU = 0.3 cm thick layer at 1 atm) What is the maximum concentration of ozone in the ozone layer? Maximum of absolute conc about 23 km (up to 1013 molecules/mL) Maximum of relative conc about 35 km (up to 10 ppm) Structure of the Ozone Layer

Observations: (i) O3 is NOT the most concentrated gas in the ozone layer (not even close!) (ii) maximum concentration is in the middle stratosphere. Big question: why does the ozone layer exist in the stratosphere? What processes are responsible for its formation and maintenance? The Chapman Cycle 1930 Sydney Chapman proposed a series of reactions to account for the ozone layer: the Chapman Cycle

Lecture Question The Chapman Cycle explains how the ozone layer is formed and maintained. Describe this process in some detail. Four chemical reactions Initiation O2 + light 2O (120 210 nm) Propagation (cycling) O + O2 + M O3 + M* (generates heat) O3 + light O2 + O (220 320 nm) Termination

O3 + O 2O2 The Chapman Cycle Oxygen-only Chemistry O2 O2 h O O3

10-4 - 10 s 60 - 3 min h odd-oxygen species (Ox) are rapidly interconverted Ox = O + O 3 O O2 Evaluation of Chapmans Model

How to evaluate Chapmans Theory? Qualitative agreement: Predicts stratosphere as a source of ozone Predicts thermal inversion in the stratosphere Quantitative agreement? Check by comparing measured ozone levels with those predicted by Chapmans model Problem with Chapmans Model

Qualitative agreement: presence of an ozone layer at the right height; predicts thermal inversion. But Predicts too much ozone What is wrong? Either there is an extra source of Ox OR There are other sinks: pathways that destroy ozone Missing Element Catalytic Destruction of Ozone

Four main families of chemicals responsible for catalyzing ozone destruction: Nitrogen oxides: NOx 1. 2. NO + NO2 Hydrogen oxides: HOx

3. OH + HO2 Chlorine: ClOx 4. Cl + ClO Bromine: BrOx

Br + BrO A common type of catalytic destruction cycle (there are others) Y+O3 YO+O 2 YO+O Y+O 2 where Y = NO, OH, Cl or Br Sources of Catalysts

Stratospheric NOx Source: tropospheric N2O Natural sources (mostly) 10% increase since 1850 (ie, due to anthropogenic activities...mostly fertilizer application) Stratospheric HOx Source: tropospheric CH4, H2, H2O Much is natural, however... 150% increase in tropospheric CH4 since 1850 (agricultural activities; landfills; other sources)

Stratospheric Cl and Br Almost entirely due to human activity Sources: tropospheric CFCs, HCFCs, halons CFCs Lecture Question What are CFCs? What are they used for? CFCs are chlorofluorocarbons; they are small molecules that contain chlorine, fluorine and carbon atoms. Usually there are only 1-2 carbon atoms.

CFCs are sometimes called Freons (that was their trade name for DuPont) CFCs are referred to by a number. The most common CFCs are: CFC11, CFC-12, CFC-113 (formulas on the next page) HCFCs are CFCs that contain hydrogen. This makes them more reactive to the OH radical, decreasing their tropospheric lifetime. That means that, on a pound-per-pound basis, HCFCs (soft CFCs) destroy less stratospheric ozone than CFCs (hard CFCs) because a smaller fraction of HCFCs survive to reach the stratosphere Most Stratospheric Chlorine is Anthropogenic CFC-11: CFCl3 CFC-12: CF2Cl2 CFC-113: CF3CCl3 HCFC-22: CHF2Cl

Aside: to convert a CFC number to a chemical formula, use the rule of 90. Despite the fact that tropospheric concentration of HCl is far greater than of CFCs, it is not a great contributor of stratospheric chlorine. Destruction of Ozone Layer by CFCs

Lecture Question How do CFCs destroy ozone? Answer in some detail. Hard CFCs are unreactive to OH and other reactive radicals in the troposphere. They are also pretty insoluble in water. That means their tropospheric lifetimes are easily long enough that the majority of tropospheric CFCs pass through the tropopause into the stratosphere. Once there, they are subject to light of shorter wavelengths (ie, more energetic photons). In particular, many CFCs absorb in the uv window (centered at 205 nm) between strong O2 and O3 absorption. That means most can photodissociate in the bottom half of the stratosphere. Photodissociation releases chlorine atoms: For example: CFCl3 + light CFCl2 + Cl ( < 225 nm)

Chlorine atoms deplete odd oxygen (Ox) largely by the following cycle Cl + O3 ClO + O2 ClO + O Cl + O2 Atmospheric Fate of CFCs Vertical concentration profiles of hard CFCs consistent with long tropospheric lifetimes followed by destruction in the stratosphere. Chlorine in the Stratosphere Question

Once released from CFCs, what happens to chlorine in the stratosphere? How does it leave the stratosphere? Chlorine undergoes a series of reactions to form a variety of compounds Some of these are active in depleting ozone: Cl, ClO Some of these do not directly deplete ozone; these are chlorine reservoirs HCl, ClONO2, HOCl The most important (long-lived) stratospheric chlorine reservoir is HCl The reservoirs can become activated by various processes such as photodissociation or reaction with OH Loss of stratospheric chlorine occurs when they cross-back into the

troposphere and are removed from the atmosphere Most common route: HCl crosses back, dissolves in water, and is washed out Chlorine in the Stratosphere Main chlorine species is HCl CCly refers to CFCs and other tropospheric sources of Cl Cly refers to the statospheric

chlorine family of active and reservoir species Relative Contributions to Ozone Loss Relative contributions to ozone loss by family Predictions from computer models Note that plots show relative contributions, not absolute rate of Ox destruction Remember that max Ox concentration is at about 25km,

and max production/loss peaks at about 40km NOx is the most important family, particularly in the middle stratosphere. HOx is most important at top and bottom of stratosphere ClOx contributes up to 30% of loss under typical circumstances (exception: polar ozone holes) The Ozone Hole

Lecture Questions What is the ozone hole? When did it first appear? How does it form? The ozone hole is the region over Antarctica with total ozone 220 Dobson Units or lower. (The avg total column ozone in the atmosphere is about 300 DU.) Ozone hole in Sept 2005. Source: NASA Detection of the Antarctic Ozone Hole global tropospheric

CFC-11 Crosses are BAS measurements; triangles and circles are NASA satellite measurements. Measurements are October averages. BAS reported their findings in 1985. NASA later verified their results. Concentration Profile during Ozone Hole The ozone hole is a sudden, marked depletion of ozone a loss of 50% or more of

total column ozone in the lower stratosphere of the Antarctic in the weeks after the Spring sunrise. In 1985 the area of the hole was 10 million sq. km (and growing yearly). What causes it??? Unique Feature of Antarctic Meteorology: Winter Vortex Polar vortex develops during the winter Atmosphere is effectively isolated from the rest of the southern hemisphere Interior temperatures plummet during long winter night large area is below

200K, and it can get as cold as 180K Three Competing Theories Chlorine-induced Circulation-driven

Supported by the timing (ozone hole began appearing in the 1970s), BUT Existing chemical models inadequate After sun rises, tropospheric upwelling pushes ozone out of the vortex (ozone displacement, not destruction) Solar storms NOx created in upper stratosphere during winter

Concentration Gradients Develop Across Vortex During ozone hole episode, polar region is very dry and denitrified (low NOy). Concentrations of active chlorine (ClOx) increases dramatically. The Smoking Gun Points to Chlorine! The Ozone Hole Explained! Global Ozone Depletion (and Effects) Lecture Question How severe is ozone depletion now on a global scale?

What was the name of the treaty signed to halt ozone depletion? Roughly 3% global stratospheric ozone has been depleted (averaged globally excepting the ozone hole and annually) The Montreal Protocol was signed in 1987 by 46 countries, including the US. It entered into force in 1989. By 1996, developed countries phased out use of CFCs, halons and CCl4; developing countries have until 2010. Developed countries are scheduled to phase out production of HCFCs by 2030; developing countries have until 2040. Global Ozone Depletion Trends Ozone and UV Trends

Effect of the Montreal Protocol on Stratospheric Cl

Recently Viewed Presentations

  • Mass, Volume and Density Let me say it

    Mass, Volume and Density Let me say it

    Just to review…if you have a regular uniformly shaped object that has a measureable length, height and width, we use which method of calculating volume? If the object is irregularly shaped, then we use what method to calculate volume? Density.
  • network - University of Arizona

    network - University of Arizona

    Multiprocessors and the Interconnect Scope Taxonomy Metrics Topologies Characteristics cost performance Interconnection Carry data between processors and to memory Interconnect components switches links (wires, fiber) Interconnection network flavors static networks: point-to-point communication links AKA direct networks. dynamic networks: switches and...
  • Blackboard Exemplary Course Program - Wilmington University

    Blackboard Exemplary Course Program - Wilmington University

    Blackboard Catalyst Award. The Blackboard Exemplary Course Program began in 2000 with the goal of identifying and disseminating best practices for designing engaging online courses. Using the . Exemplary Course Rubric, instructors and course designers are able to evaluate how...
  • Forces and Motion

    Forces and Motion

    It is also known as stored energy. Newton's Three Laws of Motion Written in 1687 Describe the motion we observe Explain the forces behind the motion 1st Law = Inertia 2nd Law = F=MA 3rd Law = Action/Reaction Inertia -...
  • 2 Hour Fire Resistance Rated Truss Assemblies

    2 Hour Fire Resistance Rated Truss Assemblies

    The end and edge joints of the finish layer of gypsum should be staggered a minimum of 24 from the joints in layer 2. The end joints of the face layer must be centered on the furring channels. If this...
  • Work Order Processing PM_WO_300 Use the forward button

    Work Order Processing PM_WO_300 Use the forward button

    Plant Maintenance uses a GuiXT (graphical user interface) that changes the look of the IRIS/SAP screens. On the Main Menu screen it adds push buttons on the left side of the screen. You can use these buttons to get to...
  • Transportation model-location planning and analysis

    Transportation model-location planning and analysis

    Transportation model-locationplanningandanalysis. ... factor rating, and the center of gravity method. LocationCost-Volume-ProfitAnalysis: ... The Center of Gravity Method involves the use of a visual map and a coordinate system; the coordinate points being treated as the set of numerical values...
  • MAGIC, WITCHCRAFT, & RELIGION What are witchcraft, magic,

    MAGIC, WITCHCRAFT, & RELIGION What are witchcraft, magic,

    anthropology of religion themes co-existence of seemingly opposite processes/ phenomena: 4 arguments in anthropology of religion arguments in anthropology of religion 19th century thinking about religion 19th century thinking about religion 19th century thinking about religion shifts in the 20th...