PCB General DFM OVERVIEW Not to be considered a Capabilities Matrix, just for basic understanding Panelization Boards are processed in multiples, on one process panel. Process Panel Since material is a major cost factor proper panel utilization is critical. 1 2 This illustration shows 4 individual PCBs on one process panel. .125" between each part 3 4 Boards are de-panelized using an N.C. route machine. Allowing .125 in. between parts allows the panels to be stacked at an optimum 4 high for each spindle. .800" border * Double-sided (2 layer PCBs) require only a .500" border 2 1

Panel Sizes Panel Size 12 x 18 12 x 24 16 x 18 18 x 24 19 x 25 21 x 24 Usable Area 10.4 x 16.4 10.4 x 22.4 14.4 x 16.4 16.4 x 22.4 17.4 x 23.4 19.4 x 22.4 - 12 x 18 panels are used for smaller boards with a quick turn requirement - 18 x 24 panels are the most cost effective panels for production orders - The larger panel sizes (Specials) impact through-put in the Drilling and Plating processes 3 Panelization Matrix Process Panel Dimension 18.00 Maximum Board Dimension 24.00 # of boards

in axis 16.4 1 8.15 2 22.4 11.15 1 2 7.40 3 5.40 4.02 3.20 2.65 2.25 1.96 5.52 4.40 3.65 3.11 2.71 2.40 18 Process Panels

24 3 4 5 6 7 8 4 5 6 7 8 9 example: 6" x 8" PCB = 6 parts per process panel 6" fits 3 times in the 24" axis 8" fits 2 times in the 18" axis 4 Arrays (Multipaks) .100" slots typical - Smaller boards may be shipped in an array form or sometimes referred to as a multipak. - Array panels allow for a more efficient assembly process. - Shown below are some typical parameters for an array panel. - Although .100" wide slots are common place, the preferred slot width is .125" - Allow PCB mfg'r to add thieving patterns to the break-away rails inner layers as well as outer layers. - To avoid additional costs avoid scoring when possible. - Scoring is an additional process which involves additional set-ups on a machine different from what is used to route PCBs

Detail "A" Detail "A" .033 .010" .028 .033 .100"slot .028 .028 .125 dia. nonplated tooling holes in at least 3 corners .350" minimum rail width is recommended .020 Dia. .031Dia. PCB .035 radius .100" This approach leaves a mouse bite, approx: .020" into PCB Rail 5 Multilayer Constructions - Multilayer PWBs consist of three different components: copper foil, pre-preg, and core material. Pre-preg is the dielectric material between each conductive layer.

- Pre-preg is a woven glass coated with resin. The pre-preg is in a partially cured state (B-stage) to allow for handling and storage. - Core materials are copper clad laminates constructed of a ply/plies of pre-preg with copper foil laminated on both sides, fully cured (C-stage). - There are two types of constructions for multilayer PCBs: Core & Foil constructions. Foil constructions are more cost effective to build. - Foil constructions also aid in yielding flatter PCBs Foil Construction copper foil pre-preg Core Construction L1 L1 L2 core core pre-preg L3 pre-preg copper foil L2 L3 core L4 L4 6

Base Copper - The amount of base copper is referred to in ounces per square foot. There is a direct correlation between the copper weight and the thickness. Nominal Weight Nominal Thickness 1/8 oz - - - - - - - - - - - - - 1/4 oz - - - - - - - - - - - - - 1/2 oz - - - - - - - - - - - - - 1 oz - - - - - - - - - - - - - 2 oz - - - - - - - - - - - - - - - .00020 .00036 .0007 .0014 .0028 Non-standard External layers with half oz copper and internal layers with 1 oz copper are preferred. Internal signal layers with lines less than .005" wide should be processed on half oz copper. Internal plane layers on 1 oz copper are more cost effective than 2 oz plane layers. A minimum of 10 mil spacing between conductors should be maintained when using 2 oz copper (A 2 oz copper requirement could add as much as 20% in material costs) 7 Dielectric Material FR4 is our standard type of material. This material is certified to MIL-P-13949. Glass Transitional Temperature - - - - - - - - - - - 135C Dielectric Constant - - - - - - - - - - - - - - - - - - - 4.5 Flammability Rating - - - - - - - - - - - - - - - - - - 94VO Laminates .004 core +/-.0010 .005 core +/-.0010

.006 core +/-.0010 .008 core +/-.0015 .010 core +/-.0015 Pre-pregs .012 core +/-.0015 .014 core +/-.0020 .018 core +/-.0020 .022 core +/-.0025 .028 core +/-.0025 .038 core +/-.0030 106 .002 +/-.0005 1080 .0027 +/-.0005 2113 .004 +/-.0005 2116 .005 +/-.0005 7628 .007 +/-.0010 PCB Manufacturing will maintain a +/-.0025" dielectric tolerance when using a pre-preg combination. * Many in the industry are beginning to require higher temperature materials (around 170 Tg) when the design has a high aspect ratio and/or a high quantity of layers. This is to reduce the z-axis expansion in the PTHs making a more reliable PTH. 8 Balanced Constructions A balanced construction is vital for achieving a flat printed circuit board. Shown below is a construction where the copper weights of the material and the dielectric spacings are balanced. In addition, the copper layout within a layer being balanced, helps yield a flat PCB. A balanced board construction as shown in the example below will help in avoiding warpage problems. 1oz 2oz

.010" s p Plane layer locations are also balanced .012" Line of Symmetry 1oz 1oz s .009" s .012" 2oz 1oz .010" p Balanced Dielectrics Balanced Dielectrics s 9 Odd Number of Layers Multilayers that have an odd number of layers will often lead to warpage problems. Adding a non-functional layer to this type of multilayer is an approach that will minimize the potential for warping. A non-functional layer can be

a plane layer with the copper relieved from all holes (no interconnects). This extra layer can also be a simulated signal layer with no connections to any holes. Whatever type of layer that is needed to balance the construction can be used and consideration to the electrical performance can also be taken (avoid signal interference). Lyr 1 Lyr 1 Lyr 2 Lyr 2 Non-functional Lyr Lyr 3 Lyr 3 Copper is etched off 10 Standard Constructions Multilayer PCB constructions should be symmetrical. A non-symmetrical construction could create warpage issues. Shown below are some typical constructions. 4 layer - .062 6 layer - .062 Copper Weight Copper Weight 1/2 oz 1 oz pre-preg .038" core

1 oz 1/2 oz pre-preg 1/2 oz 2 oz 1/2 oz copper foil .008" 1 oz 1 oz 1 oz planes .008" copper foil 1 oz 1/2 oz copper foil pre-preg 1/2 oz .012" 2 oz 1/2 oz pre-preg

.012" copper foil * 2 oz planes copper foil .008" .014" core pre-preg .006 .014" core pre-preg pre-preg .008" copper foil copper foil .008" .012" core 1 oz .028" core 2 oz 1 oz pre-preg pre-preg 1 oz 2 oz

1/2 oz .008" .012" core pre-preg .008" copper foil 11 * 2 oz plane layers add approximately 20% to the material cost of the board . 2 Layer PCB Thickness Tolerances In general, laminates for 2-layer PCBs come in the following thicknesses: .031, .040, .059, .093, and .125.These are the raw material thicknesses, copper cladding inclusive. Since PCBs are plated with additional copper, the finished board thickness is increased by approximately 3 - 4 mils. The additional plating adds to the tolerance required for the finished board thickness. The finished board thickness should be determined by adding the laminate thickness with the plating thickness (3 mils). As far as the finished board thickness tolerance, an additional 2 mils should be added to the laminate thickness tolerance. Below is a table showing standard finished board thicknesses and tolerances. Laminate Thick .031 .040 .059 .093 .125 Laminate Toler +/-.004 +/-.004 +/-.005 +/-.007 +/-.009

Plating Thick .003 .003 .003 .003 .003 Plating Toler +/-.002 +/-.002 +/-.002 +/-.002 +/-.002 Finished Thick & Toler. .034 +/-.006 .043 +/-.006 .062 +/-.007 .096 +/-.009 .128 +/-.012 12 Aspect Ratio Aspect ratio describes the relationship between the PCB thickness and the smallest drilled hole. This ratio is critical in allowing proper plating of the hole. Aspect ratios of 5:1 are typical. As the aspect ratio goes up so should the consideration to use a high temperature material (170 Tg). With high temperature material theres less z-axis expansion when exposed to thermal processes. Z-axis expansion introduces stress on a plated barrel of the hole and presents a risk of barrel cracking (results is potential intermittent open in the via). Aspect Ratio = Board Thickness / Drilled hole .014" Drill .062" .018" Drill

.093" .025" Drill .125" 13 Hole Tolerances .014 .025 .125 PLATED PLATED NON-PLTD +.003/-.014 +/-.003 +/-.002 - A 6 mil window is preferred for plated-thru holes. A 6 mil window would be +/-.003", or +.005/-.001, etc.. - Plated-thru holes are typically drilled 4-6 mils over the nominal finished hole size. This compensates for the plating which will fill the hole. The copper and solder plating generally reduce the hole diameter by approximately 3-5 mils. - Large plated-thru holes (100"dia., plus) located towards the edge of a board should have large outer layer pads to prevent them from plating too fast. A pad roughly .200" greater than the hole will help. - Plated holes isolated from conductive areas will tend to plate faster than holes located in dense areas. The addition of thieving patterns will help this condition. (See section 4D for more information on thieving) * Small vias (.015" or less) should have no bottom tolerance. Since no insertion is required in these holes, the bottom tolerance should not be critical. These small holes will generally plate faster than other holes during our process and they can also plug with solder during the HASL process. - Non-plated holes require a 4 mil window, a 3 mil window is acceptable in some cases. Outer layer pads for these holes should be removed. This allows for the fabricator to tent the holes during the plating process making the hole non-plated. An additional secondary drill operation is avoided with the tenting approach. * Having no bottom tolerance on vias allows the PCB manufacturer choose the most cost effective drill diameter. The drill diameter will be determined by the via pad size (typically DRILL DIA + .012 = PAD SIZE) if less than .012 then teardrops are recommended.

14 Pad Sizing This is an area where discrepancies are common. The formula below can be used to determine pad sizes for plated-thru holes. PAD SIZE = FHS + .017" + (2 x A/R) FHS: nominal finished hole size ; A/R: finished annular ring requirement The smallest cost effective via is drilled with a .014 drill diameter and it should have a .025 pad, which can still achieve a .002 annular ring at the junction if teardropping is permitted To ensure sufficient isolation from internal plane layers, anti-pads can be determined with the following formula. THERMAL RELIEFS ANTI-PAD SIZE = FHS + .030" An .035 anti-pad can be used for small vias INSIDE DIA. = PAD SIZE OUTSIDE DIA. = I.D. + .020" TIES (minimum) = .010" Removal of non-functional pads on internal layers is recommended. Having no pads for non-plated holes is preferred. This allows the PCB fabricator to tent the hole and avoid a secondary drill operation. If a pad is required, a .010" clearance of the hole will still allow for tenting. Pad .010" clearance Drilled Hole 15 The New Smaller Vias

Increasing densities require smaller vias Hole sizes are being specified down to 8 mils Excluding micro-vias (HDI Technology) PCB fabricators will drill with the most cost effective drill diameter Maintain an annular ring The hole size is irrelevant Insertion not required Interconnect is the goal Choice of drill diameter is key Maintain annular ring Must be able to plate Drill diameters less than .0135 begin to add cost Pad size Drill dia. .025 .0135 .020 .012 .018 .010 16 Teardrops D Drilled Hole T X D = Pad Diameter T = Teardrop Diameter X = Extension

* The teardrop provides a reliable connection of the plated thru-hole with any conductor routed to that hole, even in cases where the hole is mis-aligned. * Most all CAM softwares have teardropping features which will maintain minimum spacings required by the customer. 17 Trace Widths Acceptable Minimum Trace Width Associated Spacing .004 Tolerance *Special .005" .004 .005" +/-.001 .003" .004 +.000 -.001 +.000

-.001 *Half oz. copper is reqd, both for external and internal layers - Although etching fine lines on external layers is more challenging to produce than those on internal layers the capability is pretty much the same - Half oz. base copper is preferred on outer layers - A thicker copper limits fine line capability - Producing lines less than 3 mils requires a different manufacturing approach altogether - Signal layers using 2 oz copper should be limited to designs with non-critical lines of 15 mils or greater Etch resist Conductor To compensate for etching undercut, artwork trace widths are increased. Artwork for designs which begin at 4 mil spacing are not compensated. Etching circuitry with spacing less than 4 mils becomes a non-standard design and will add cost. Copper Thickness Laminate A/W Compensation .5 oz .5 mils 1 oz 1 mil 2 oz 2-3 mils

Undercut is typically equal to about 1/2 the conductor thickness 18 Trace Routing - It is important to balance the circuit pattern across the board On the external layers it helps achieve a uniform plating On the internal layers it helps avoid potential warpage issues Areas with isolated circuits should be surrounded by thieving patterns - This will balance the pattern to be plated and achieve a more consistent plating. The thieving patterns are either square .080" non-functional pads on .100" centers, or round .080" non-functional pads on .100" centers. Spacings - Trace to board edge spacing should be no less than .010" (cut-outs included). - Trace to hole spacing should be .010". This would include both plated and non-plated holes Board Edge .010" .010" .010" Non-plated hole cut-out 19 Controlled Impedance - Controlled impedance is becoming quite common - Critical factors are:

- Conductor width - Conductor height - Dielectric spacing - Dielectric Constant - Controlling the conductor width is aided by using the proper copper weight - .5 or 1 oz for internal layers - .5 oz for external layers - 2 oz is strongly discouraged, etch control for thick copper is not consistent - Tolerance of +/-10 % is typical (+/- 5 ohms is the tightest tolerance) DOCUMENTATION - Dielectric spacing should be referenced on the drawing with no tolerance - Indicate Reference Only - Flexibility for the PCB fabricator to meet the requirement - Specify which conductors are to be impedance controlled - Do this on the drawing by indicating the conductor by its width - Indicate on which layer the conductor is i.e. 5 mil lines on layers 1 and 6 are to be 50 ohms +/- 10% - If differential impedance is required also indicate the conductor spacing between the impedance pair (or the pitch) 20 Copper Plating - An electrolytic plating method is used to deposit copper onto plated features and into plated-thru holes - Variables which affect the copper thickness are: - plating time - amperage - feature to be plated - location of the plated feature within the panel Plating Distribution (within a process panel) High Current Density Area This area of the panel plates

faster than the low current density areas Low Current Density Area - The industry standard for copper plating in the hole is .001" minimum average Measurements less than .001" (but greater than .0008") are acceptable This copper plating thickness will provide a reliable plated-thru hole Plating copper thicknesses greater than .001" introduce processing issues for the PCB fabricator Problems arise in the plating , resist strip, etching, and soldermask operations 21 Solder Coating - Solder is electrolytically plated on all panels immediately after the copper plating operation PCBs requiring solder traces go to a reflow operation after the external image is etched The solder will be used as the etch resist PCBs requiring bare copper traces (SMOBC) will have the solder stripped after etch Soldermask is then applied over the bare copper traces Solder is then re-applied to all exposed features with a hot-air-solder leveling process (HASL) - The HASL process involves - Immersing the PCB panel in a bath of molten solder - Temperatures equal to that of a wave solder - 2-4 seconds - Air knives blow off the excess solder as the panel exits - The solder thickness achieved is dependent on the feature size, orientation, and location on the panel - Smaller features retain more solder than larger features. Solder Thickness Range: .000050" - .001500" - Solder thicknesses within this range have shown acceptable solderability - The latest IPC (IPC-6012)standards has no solder thickness requirement, it only requires good solderability.

Solder composition contains a minimum 60% and maximum 70% of tin. 22 Gold Plated Edge Connectors - Gold plating can be performed in an electrolytic bath where an entire photodefined image is gold plated with a nickel layer beneath - This approach is costly to maintain - Edge connectors are typically plated on Gold Tipping Lines which are cost effective for this application - The maximum distance between the top of any connector finger and the board edge should be 3.00". The maximum length of a connector finger should be 1.00". 3.00" 1.00" - Boards with gold connector fingers along two different edges of the board, will require shearing of the process panel prior to gold plating. - Minimum panel width to run down a conveyorized gold tab plating line is 5.00". - .000100" of nickel and .000030" of gold is typical. 5.00" min. shearline .300" min. 23 Thieving Patterns - Thieving is a term used to describe the use of non-functional copper pads to balance the the copper area of any particular layer

- Thieving is intended to avoid isolated copper features - Isolated features tend to plate faster than other features and can even burn during the plating process - Thieving patterns will prevent the over-plating of these features and provide a more uniform copper surface - Thieving patterns are typically .080" round or square pads on .100" centers - Located closer than .050" from any conductive area and .050" from the board edge. - On panelized arrays, all breakaway areas should have thieving patterns. - Thieving or non-functional copper used in sparse areas of internal layer is also beneficial to manufacurability - Designs which are not well balanced in respect to copper distribution, many times introduce warpage issues - Adding copper to an internal layer also gives that layer more dimensional stability - This is more so with layers having thin dielectrics (less than 6 mils) - High layer count PCBs benefit greatly when signal layers are paired with a plane layer 24 Thieving Examples - Adding a non-function plane around the signals as shown in figure C can prevent the funnel plating (figure A) or any other over-plating of isolated features - Figure B shows how over-plating features which require a soldermask coating can introduce air entrapment in the soldermask Funnel Plating (cross-section of hole) Non-functional Plane Soldermask Circuit Plane side Laminate Signal side Air Entrapment

Copper Plating Undersized hole due to over-plating Figure A Figure B Figure C 25 Soldermask - Soldermask is the external coating of the PCB, which is intended to restrict solder pick-up or reflow to those areas which are left uncoated (ie: SMD pads, component holes, etc.). - The 3 most common types of soldermask are Wet Screened mask, Dry Photoimageable, and Liquid Photoimageable (LPI). Type Thickness Wet (PC501) - .0012" Dry (Conformask) LPI (Coates, Epic, Hysol) .0006" .0025" typ. .0007" - .001" Wet screened mask - Manual operation - Woven mesh screens , polyester or stainless steel - Thermal cure

Dryfilm Soldermask - Coating is a manual operation - Accuracy of a photo defining process - Combination UV & thermal cure Liquid Photoimageable Soldermask - Coating is a semi-automated operation - Accuracy of a photo defining process - Thermal cure 26 Soldermask Design Wet Screened mask design parameters: COPPER TRACE .005 COPPER PAD .005 Soldermask Coverage A wet screened soldermask requires at least .005 designed clearance of any conductor. This will ensure that any bleeding of the soldermask stays clear of that conductor. At the same time it must overlap any conductor by .005 when intended to be covered with soldermask. In essence, no design with conductor spacing less than .010 should use a wet screened soldermask. Although this method is cost effective, it is not an accurate one. 27 Soldermask Design - LPI LPI soldermask Design Parameters Surface Mount Technology SMT PAD

COPPER TRACE .002 COPPER PAD .002 Soldermask Coverage .002 .005 The smallest soldermask dams produced in production are 5 mils wide. Dams help avoid solder bridging between SMT pads. Dryfilm soldermasks are just as accurate as LPI soldermasks, but there are some negative aspects with the dryfilm. - More labor intensive (higher cost) - Less chemical resistant than LPI - Sensitive to high temperature rinses 28 - Susceptible to ionic contamination Wetmask Via Plugging This process is as an alternative to dryfilm soldermask tenting, for boards designed with tented vias but the soldermask being used is LPI. This should only be used if a vacuum draw is needed for in-circuit testing. If the tented vias were to prevent solder bridging, then mask up onto the vias would be a sufficient alternative. A plugging mask file can be generated by CAM. This file would include all the vias except any test points. SR1000 is typically screened on the bottom side of the board using this artwork. Screen Wetmask

LPI Process HASL Copper LPI Artwork Compensations LPI Reliefs, Plug Side: ZERO Relief LPI Reliefs, Other Side: FHS-.005" (no less than.008") Via Plugs: Drill Size + .006" Wetmask Plug (SR1000) This plugging approach is for vias with an .020" dia. or less (drill) 29 Silkscreened Legends Legends are manually silkscreened using non-conductive epoxy ink. This process is not very accurate as far as registration or resolution. Legibility of characters is dependent on the character size. The minimum character height should be .040" with .007" spacing between characters. The optimum line width should be .007". If the spacing between characters is less than .007" than the height should be no less than .045". Legend should be clipped from all component pad surfaces. This should be considered when laying out the legend if legibility is to be maintained. Optimum Character Dimensions .007" width .040" min. height

U103 .007 space between characters 30 Electrical Test - Electrical test should be performed on all PCBs to ensure no opened or shorted circuits are present. - PCB Manufacturing performs a bed-of-nails electrical test on all boards prior to shipping. - Clamshell testing isnow the norm for 2-sided SMT PCBs - CAD Netlist Data is compared to the gerber netlist and used on the test machines Test Capabilities (minimum pad dimension: .008 x .040") Machine Trace 948 Trace 948E Trace 924 Mania Cube E/C 9090 Voltage Test Area Max. test pts. Grid Resistance (shorts) Resistance (opens)

10 - 100V 17x21 42,000 .100" 100 M ohms 10V 17x21 42,000 .100" 2.5 M ohms 10V 10x16 16,000 .100" 2.5 M ohms 40V 12x16 19,200 .100" 2.5 M ohms 10- 250V 15.5x19.2 30,100 .100" 2.5 Mohms 3 ohms 3 ohms 3 ohms

5 ohms 40 ohms 31 Testing Approaches The Test A single-sided test refers to a test of one side of the board only. - Provides a 100% test of a though-hole boards - Or single-sided SMT boards The Program The test program from which the board will be tested against is generated by one of two methods: Comparative or Netlist A Flip test refers to 2 separate tests: first test, probing the top of the board second test, probing the bottom of the board Comparative or "Golden Board" Program - This test approach is used for double-sided SMT boards In this approach the test machine is programmed using - This is not recommended since it will not provide a 100% test a board from the lot of boards built. All other boards are tested for commonality to that board. A clamshell test refers to a top and bottom simultaneous electrical test of a board. Netlist Program - Provides a 100% test of double-sided SMT boards A netlist is extracted from the gerber data provided. This - Preferred for double-sided SMT boards netlist data is down loaded to the test machine and all boards are tested verifying all nets. CAD and gerber netlists are compared to each other for accuracy. *Tooling holes must be provided for board placement onto the test machine. .125 diameter non-plated holes are typical in 3 different corners.

32 Testing Approaches (2) Flip Test #1 Flip Test #2 SMD Endpoint Net-A Net-A Net-C Net-B Net-B Net-C SMD Endpoint Clamshell Test SMD Endpoint Net-A Net-B Net-C SMD Endpoint 33

Fabrication Minimum Inside Radius Routing Typical Special .047" .031" +/-.005" +/- .003" An .047 radius is achieved by using an .093 router bit. This bit is most cost effective choice for the fabricator. Smaller bits can be used but the panel stack height must be reduced. Router bit diameter .093 4 panels .062 3 panels .031 1 panel Stack height +/- 005 +/- .003 +/- .002 Tolerance Scoring (Barnaby Scoring machine parameters) Remaining Thickness +/-.005" (maximum score depth: .025")

Positional Accuracy +/-.005" Copper features should be no closer than .040" of the score line.Score lines must be continuous (no plunging) Scoring allows for zero spacing between parts. A .050" wide soldermask clearance should be provided for the score line. 30 Degrees 34

Recently Viewed Presentations

  • Guidance for sales enablement solution brief

    Guidance for sales enablement solution brief

    The Security Operations problem: Volume and Complexity continues to rise. Use available space at font size indicated (10 pt). Copy can be 2 or 3 columns, with the highlight bar in the third or fourth column. The Challenge (title 2...
  • EXL317: Microsoft Lync 2010: Interoperability, Integration ...

    EXL317: Microsoft Lync 2010: Interoperability, Integration ...

    New: Video Interoperability Program. Allow partner solutions to make and accept video calls with Lync 2010 (or OCS 2007 R2) Direct registration to Lync for partner VTC/telepresence and/or MCU
  • House Bill 5 Overview - Region 19

    House Bill 5 Overview - Region 19

    Available at the high school or through distance learning. Count as an advanced ELA or math course under Foundation Program . May be offered for dual credit at the discretion of the IHE. Parents must be notified of college prep...
  • 1 Our Brains are made in a way

    1 Our Brains are made in a way

    This technology produces three-dimensional images of the brain's soft tissues by detecting magnetic activity from nuclear particles in brain molecules. MRI provides greater accuracy in the diagnosis of brain diseases than the CAT scan. * Magnetic Resonance Imaging (MRI) has...
  • ntent: and Alliance ommon enemy eological differences ommunist

    ntent: and Alliance ommon enemy eological differences ommunist

    The Grand Alliance collapsed because… They went from allies to enemies because… Ideological differences meant that…. The USSR felt threatened because… The USA felt threatened because… The USA were a threat to the USSR because.. The USSR were a threat...
  • The Slippery Slope to Efficiency?

    The Slippery Slope to Efficiency?

    Professor Jenny Gore. The University of Newcastle. Complex field of teacher professional learning. Support such as protocols, leadership, facilitation. Teacher learning, teaching practice, student outcomes. DESIGN. Design of approach to professional development.
  • Probabilistic Approaches to Video Retrieval The Lowlands Team

    Probabilistic Approaches to Video Retrieval The Lowlands Team

    Probabilistic Approaches to Video Retrieval The Lowlands Team at TRECVID 2004 Tzvetanka ('Tzveta') I. Ianeva Lioudmila ('Mila') Boldareva Thijs Westerveld
  • Hvad Kan Man Bruge Svinekød Til

    Hvad Kan Man Bruge Svinekød Til

    Kødet er kulinarisk bedst. Magert kød er mest saftigt ved en centrumtemperatur på 60-70 grader. Centrumtemperaturen har betydning for mørhed, saftighed, smag og farve